Skip to main content
Log in

Signal Processing Techniques for Vibration-Based Health Monitoring of Smart Structures

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Signal processing is the key component of any vibration-based structural health monitoring (SHM). The goal of signal processing is to extract subtle changes in the vibration signals in order to detect, locate and quantify the damage and its severity in the structure. This paper presents a state-of-the-art review of recent articles on signal processing techniques for vibration-based SHM. The focus is on civil structures including buildings and bridges. The paper also presents new signal processing techniques proposed in the past few years as potential candidates for future SHM research. The biggest challenge in realization of health monitoring of large real-life structures is automated detection of damage out of the huge amount of very noisy data collected from dozens of sensors on a daily, weekly, and monthly basis. The new methodologies for on-line SHM should handle noisy data effectively, and be accurate, scalable, portable, and efficient computationally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Acharya UR, Vinitha Sree S, Alvin APC, Suri JS (2012) Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int J Neural Syst 22(2):1250002–1250014

    Article  Google Scholar 

  2. Adeli H, Jiang X (2006) Dynamic fuzzy wavelet neural network model for structural system identification. J Struct Eng ASCE 132(1):102–111

    Article  Google Scholar 

  3. Adeli H, Jiang X (2009) Intelligent infrastructure: neural networks, wavelets, and chaos theory for intelligent transportation systems and smart structures. CRC Press, Boca Raton

    Google Scholar 

  4. Adeli H, Kim H (2004) Wavelet-hybrid feedback least mean square algorithm for robust control of structures. ASCE J Struct Eng 130(1):128–137

    Article  Google Scholar 

  5. Adeli H, Ghosh-Dastidar S (2010) Automated EEG-based diagnosis of neurological disorders-inventing the future of neurology. CRC Press, Taylor & Francis, Boca Raton, FL

    Book  Google Scholar 

  6. Adeli H, Karim A (2005) Wavelets in intelligent transportation systems. Wiley, London

    MATH  Google Scholar 

  7. Ahmadlou A, Adeli H, Adeli A (2011) Fractality and a wavelet-chaos methodology for EEG-based diagnosis of Alzheimer’s disease. Alzheimer Dis Assoc Disord 25:85–92

    Article  Google Scholar 

  8. Alexandridis A (2013) Evolving RBF neural networks for adaptive soft-sensor design. Int J Neural Syst 23(6):1–14

    Article  Google Scholar 

  9. Al-Naser M, Soderstrom U (2012) Reconstruction of occluded facial images using asymmetrical principal component analysis. Integr Comput Aid Eng 19(3):273–283

    Google Scholar 

  10. Amezquita-Sanchez JP, Osornio-Rios RA, Romero-Troncoso RJ et al (2012) Hardware–software system for simulating and analyzing earthquakes applied to civil structures. Nat Hazards Earth Syst Sci 12:61–73

    Article  Google Scholar 

  11. Amezquita-Sanchez JP, Garcia-Perez A, Romero-Troncoso RJ, Osornio-Rios RA, Herrera-Ruiz G (2013) High-resolution spectral–analysis for identifying the natural modes of a truss-type structure by means of vibrations. J Vib Control 19:2347–2356

    Article  Google Scholar 

  12. Amini F, Khanmohamadi Hazaveh N, Abdolahi Rad A (2013) Wavelet PSO-based LQR algorithm for optimal structural control using active tuned mass dampers. Comput Aid Civ Infrastruct Eng 28(7):542–557

    Article  Google Scholar 

  13. Antonino-Daviu JA, Riera-Guasp M, Pineda-Sanchez M, Perez RB (2009) A critical comparison between DWT and Hilbert–Huang-based methods for the diagnosis of rotor bar failures in induction machines. IEEE Trans Indus Appl 45(5):1794–1803

    Article  Google Scholar 

  14. Auger F, Flandrin P (1995) Improving the readability of time–frequency and time-scale representations by the reassignment method. IEEE Trans Signal Process 43(5):1068–1089

    Article  Google Scholar 

  15. Bao C, Hao H, Li Z, Zhu X (2009) Time-varying system identification using a newly improved HHT algorithm. Comput Struct 87(23–24):1611–1623

    Article  Google Scholar 

  16. Belouchrani A, Abed-Meraim K, Cardoso J, Moulines E (1997) A blind source separation technique using second-order statistics. IEEE Trans Signal Process 45(2):434–444

    Article  Google Scholar 

  17. Bradford SC, Yang J, Heaton T (2006) Variations in the dynamic properties of structures: the Wigner–Ville distribution. In: Proceedings of the 8th U.S. national conference on earthquake engineering, April 18–22, 2006, San Francisco, California, USA, pp 1–10

  18. Brincker R, Zhang L, Andersen P (2001) Modal identification of output-only systems using frequency domain decomposition. Smart Mater Struct 10:1–10

    Article  Google Scholar 

  19. Brown RA, Frayne R (2008) A fast discrete S-transform for biomedical signal processing. In: Engineering in Medicine and Biology Society, EMBS 2008. 30th annual international conference of the IEEE, pp 2586–2589

  20. Brown R, Zhu H, Mitchell JR (2005) Distributed vector processing of a new local multi-scale fourier transform for medical imaging applications. IEEE Trans Med Imaging 24(5):689–691

    Article  Google Scholar 

  21. Carden PE, Brownjohn JMW (2008) ARMA modelled time series classification for structural health monitoring. Mech Syst Signal Process 22:295–314

    Article  Google Scholar 

  22. Chatzi EN, Smyth AW (2009) The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing. Struct Control Health Monit 16(1):99–123

    Article  Google Scholar 

  23. Chavez O, Millan-Almaraz JR, Perez-Enrıquez R, Kotsarenko A, Cruz-Abeyro JA, Rojas E (2010) Detection of ULF geomagnetic signals associated with seismic events in Central Mexico using discrete wavelet transform. Nat Hazards Earth Syst 10:2557–2564

    Article  Google Scholar 

  24. Chen CH, Wang CH, Lui JY, Lui C, Liang WT, Yen HY, Yeh YH, Chia YP, Wang Y (2010) Identification of earthquakes signals from groundwater level records using the HHT method. Geophys J Int 180:1231–1241

    Article  Google Scholar 

  25. Cheraghi N, Zou GP, Taheri F (2005) Piezoelectric-based degradation assessment of a pipe using fourier and wavelet analyses. Comput Aid Civ Infrastruct Eng 20:369–382

    Article  Google Scholar 

  26. Choi H, Williams J (1989) Improved time–frequency representation of multicomponent signals using exponential kernels. IEEE Trans Acoust Speech Signal Process 37(6):862–871

    Article  Google Scholar 

  27. Cichocki A, Amari S (2003) Adaptive blind signal and image processing. Wiley, West Sussex

    Google Scholar 

  28. Claasen T, Mecklenbrauker W (1980) The Wigner distribution: a tool for time–frequency signal analysis. Philips J Res 35:217–250, 276–300, 372–389

  29. Cohen L (1966) Generalized phase–space distribution functions. J Math Phys 7:781–786

    Article  Google Scholar 

  30. Daubechies I, Lu J, Wu HT (2011) Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl Comput Harmonic Anal 30:243–261

    Article  MATH  MathSciNet  Google Scholar 

  31. Dehghani MJ (2009) Comparison of S-transform and wavelet transform in power quality analysis. World Acad Sci Eng Technol 50:395–398

    MathSciNet  Google Scholar 

  32. Dinh V, Basu B, Brinkgreve R (2013) Wavelet-based evolutionary response of multispan structures including wave-passage and site-response effects. ASCE J Eng Mech. doi:10.1061/(ASCE)EM.1943-7889.0000708,04014056

  33. Ditommaso R, Mucciarelli M, Parolai S, Picozzi M (2012) Monitoring the structural dynamic response of a masonry tower: comparing classical and time–frequency analyses. Bull Earthq Eng 10(4):1221–1235

    Article  Google Scholar 

  34. Fan J, Yao Q (2003) Nonlinear time series. Nonparametric and parametric methods. Springer, New York

    Book  MATH  Google Scholar 

  35. Fan W, Qiao P (2009) A 2-D continuous wavelet transform of mode shape data for damage detection of plate structures. Int J Solids Struct 46(25–26):4379–4395

    Article  MATH  Google Scholar 

  36. Feng X, Zhang X, Sun C, Motamedi M, Ansari F (2014) Stationary wavelet transform method for distributed detection of damage by fiber-optic sensors. ASCE J Eng Mech 140(4):04013004

    Article  Google Scholar 

  37. Gabor D (1946) Theory of communication. IEEE J Inst Electr Eng 93:429–441

    Google Scholar 

  38. Garcia-Palencia AJ, Santini-Bell E (2013) A two-step model updating algorithm for parameter identification of linear elastic damped structures. Comput Aid Civ Infrastruct Eng 28(7):509–521

    Article  Google Scholar 

  39. Garcia-Perez A, Amezquita-Sanchez JP, Dominguez-Gonzalez A, Sedaghati R, Osornio-Rios R, Romero-Troncoso RJ (2013) Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis. J Zhejiang Univ Sci A 14:615–630

    Article  Google Scholar 

  40. Garcia-Perez A, Romero-Troncoso RJ, Cabal-Yepez E, Osornio-Rios RA, Lucio-Martinez JA (2012) Application of high-resolution spectral analysis for identifying faults in induction motors by means of sound. J Vib Control 18(11):1585–1594

    Article  Google Scholar 

  41. Garcia-Perez A, Romero-Troncoso RJ, Cabal-Yepez E, Osornio-Rios RA, Rangel-Magdaleno JJ, Miranda H (2011) Startup current analysis of incipient broken rotor bar in induction motors using high-resolution spectral analysis. In: Proceedings of IEEE international symposium on diagnostics for electric machines, power electronics and drives, Bologna, Italy, September 5–8, 2011, pp 657–663

  42. Ghanem R, Ferro G (2006) Health monitoring for strongly non-linear systems using the ensemble Kalman filter. Struct Control Health Monit 13(1):245–259

    Article  Google Scholar 

  43. Ghodrati Amiri G, Abdolahi Rad A (2012) Generation of near-field artificial ground motions compatible with median predicted spectra using PSO-based neural network and wavelet analysis. Comput Aid Civ Infrastruct Eng 27(9):711–730

    Article  Google Scholar 

  44. Ghosh-Dastidar S, Adeli H (2006) Neural network–wavelet micro-simulation model for delay and queue length estimation at freeway work zones. J Transp Eng ASCE 132(4):331–341

    Article  Google Scholar 

  45. Gilles J (2013) Empirical wavelet transform. IEEE Trans Signal Process 61(16):3999–4010

    Article  MathSciNet  Google Scholar 

  46. Han JG, Ren WX, Sun ZS (2005) Wavelet packet based damage identification of beam structures. Int J Solids Struct 42(26):6610–6627

    Article  MATH  Google Scholar 

  47. Han J, Baan M (2013) Empirical mode decomposition for seismic time–frequency analysis. Geophysics 78(2):9–19

    Article  Google Scholar 

  48. Hazra B, Sadhu A, Roffel AJ, Narasimhan S (2012) Hybrid time-frequency blind source separation towards ambient system identification of structures. Comput Aid Civ Infrastruct Eng 27:314–332

    Article  Google Scholar 

  49. He X, Hua X, Chen Z, Huang F (2011) EMD-based random decrement technique for modal parameter identification of an existing railway bridge. Eng Struct 33(4):1348–1356

    Article  Google Scholar 

  50. Hou Z, Hera A, Shinde A (2006) Wavelet-based structural health monitoring of earthquake excited structures. Comput Aid Civ Infrastruct Eng 21(4):268–279

    Article  Google Scholar 

  51. Hsu TY, Hunag SK, Lu KC, Loh CH, Wang Y, Lynch J (2011) On-line structural damage localization and quantification using wireless sensors. Smart Mater Struct 20:105025

    Article  Google Scholar 

  52. Hsu W, Chiou D, Chen C, Liu M, Chiang W, Huang P (2012) Sensitivity of initial damage detection for steel structures using the Hilbert–Huang transform method. J Vib Control 19(6):857–878

    Article  Google Scholar 

  53. Hsu WY (2013) Single-trial motor imagery classification using asymmetry ratio, phase relation and wavelet-based fractal features, and their selected combination. Int J Neural Syst 23(2):1350007 (13 pages)

    Article  Google Scholar 

  54. Hu XY, Wang B, Ji H (2013) A wireless sensor network-based structural health monitoring system for highway bridges. Comput Aid Civ Infrastruct Eng 28(3):193–209

    Article  Google Scholar 

  55. Huang CC, Loh CH (2001) Nonlinear identification of dynamic systems using neural networks. Comput Aid Civ Infrastruct Eng 16(1):28–41

    Article  Google Scholar 

  56. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and Hilbert spectrum for non-linear and non-stationary time series analysis. Proc R Soc A Math Phys Eng Sci 454:903–995

    Article  MATH  MathSciNet  Google Scholar 

  57. Jazwinski AH (1970) Stochastic processes and filtering theory. Academic Press Inc, New York, USA

    MATH  Google Scholar 

  58. Jiang X, Adeli H (2005) Dynamic wavelet neural network for nonlinear identification of highrise buildings. Comput Aid Civ Infrastruct Eng 20(5):316–330

    Article  Google Scholar 

  59. Jiang X, Adeli H (2007) Pseudospectra, MUSIC, and dynamic wavelet neural network for damage detection of highrise buildings. Int J Numer Meth Eng 71(5):606–629

    Article  MATH  Google Scholar 

  60. Jiang X, Ma ZJ, Ren WX (2012) Crack detection from the slope of the mode shape using complex continuous wavelet transform. Comput Aid Civ Infrastruct Eng 27(3):187–201

    Article  Google Scholar 

  61. Jones KA, Porjesz B, Chorlian D, Rangaswamy M, Kamarajan C, Padmanabhapillai A, Begleiter H (2006) S-transform time–frequency analysis of P300 reveals deficits in individuals diagnosed with alcoholism. Clin Neurophysiol 117(10):2128–2143

    Article  Google Scholar 

  62. Julier S, Uhlmann J, Durrant-Whyte HF (2000) A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans Autom Control 45(3):477–482

    Article  MATH  MathSciNet  Google Scholar 

  63. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82(1):35–45

    Article  Google Scholar 

  64. Khan A, Yin H (2012) Efficient blind image deconvolution using spectral nongaussianity. Integr Comput Aid Eng 19(4):331–340

    Google Scholar 

  65. Kim H, Adeli H (2005a) Hybrid control of smart structures using a novel wavelet-based algorithm. Comput Aid Civ Infrastruct Eng 20(1):7–22

    Article  Google Scholar 

  66. Kim H, Adeli H (2005b) Wind-induced motion control of 76-story benchmark building using the hybrid damper-tuned liquid column damper system. J Struct Eng ASCE 131(12):1794–1802

    Article  Google Scholar 

  67. Kim J, Lynch J (2012) Autonomous decentralized system identification by Markov parameter estimation using distributed smart wireless sensor networks. ASCE J Eng Mech 138(5):478–490

    Article  Google Scholar 

  68. Kodogiannis VS, Amina M, Petrounias I (2013) A clustering-based fuzzy–wavelet neural network model for short-term load forecasting. Int J Neural Syst 23(5):1350024 (19 pages)

    Article  Google Scholar 

  69. Laflamme S, Slotine J, Connor J (2011) Wavelet network for semi-active control. ASCE J Eng Mech 137(7):462–474

    Article  Google Scholar 

  70. Lee J, Kim S (2007) Structural damage detection in the frequency domain using neural networks. J Intell Mater Syst Struct 18(8):785–792

    Article  Google Scholar 

  71. Lee T (1998) Independent component analysis: theory and applications. Kluwer Academic Publishers, Boston

    MATH  Google Scholar 

  72. Li H, Yi W, Yuan X (2013) Fuzzy-valued intensity measures for near-fault ground motions. Comput Aid Civ Infrastruct Eng 28(10):780–795

    Article  Google Scholar 

  73. Lin CM, Ting AB, Hsu CF, Chung CM (2012) Adaptive control for MIMO uncertain nonlinear systems using recurrent wavelet neural network. Int J Neural Syst 22(1):37–50

    Article  MATH  Google Scholar 

  74. Liu F, Er MJ (2012) A novel efficient learning algorithm for self-generating fuzzy neural network with applications. Int J Neural Syst 22(1):21–35

    Article  Google Scholar 

  75. Liu J, Wang X, Yuan S, Li G (2006) On Hilbert–Huang transform approach for structural health monitoring. J Intell Mater Syst Struct 17(8–9):721–728

    Article  Google Scholar 

  76. Liu TY, Chiang WL, Chen CW, Hsu WK, Lu LC, Chu TJ (2010) Identification and monitoring of bridge health from ambient vibration data. J Vib Control 17(4):589–603

    Article  Google Scholar 

  77. Lo C, Lynch J, Liu M (2013) Distributed reference-free fault detection method for autonomous wireless sensor networks. IEEE Sens J 13(5):2009–2019

  78. Lozano-Galant JA, Nogal M, Castillo E, Turmo J (2013) Application of observability techniques to structural-system identification. Comput Aid Civ Infrastruct Eng 28(6):434–450

    Article  Google Scholar 

  79. Lu KC, Loh CH, Yang YS, Lynch JP, Law KH (2008) Real-time structural damage detection using wireless sensing and monitoring system. Smart Struct Syst 4:759–778

    Article  Google Scholar 

  80. McNeill SI, Zimmerman DC (2008) A framework for blind identification using joint approximate diagonalization. Mech Syst Signal Process 22:1526–1548

    Article  Google Scholar 

  81. Michel C, Gueguen P (2010) Time–frequency analysis of small frequency variations in civil engineering structures under weak and strong motions using a reassignment method. Struct Health Monit 9(2):159–171

    Article  Google Scholar 

  82. Mosquera V, Smyth AW, Betti R (2012) Rapid evaluation and damage assessment of instrumented highway bridges. Earthq Eng Struct Dynamics 41(4):755–774

    Article  Google Scholar 

  83. Nagarajaiah S, Basu B (2009) Output only modal identification and structural damage detection using time frequency and wavelet techniques. Earthq Eng Eng Vibr 8(4):583–605

    Article  Google Scholar 

  84. Nagata Y, Iwasaki S, Hariyama T, Fujioka T, Obara T, Wakatake T (2009) Binaural localization based on weighted wiener gain improved by incremental source attenuation. IEEE Trans Audio Speech Lang Process 17(1):52–65

    Article  Google Scholar 

  85. Nair KK, Kiremidjian AS, Law KH (2006) Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure. J Sound Vib 291:349– 368

    Article  Google Scholar 

  86. Ni YQ, Zhou XT, Ko JM (2006) Experimental investigation of seismic damage using PCA-compressed frequency response functions and neural networks. J Sound Vib 290(1–2):242–263

  87. Nigro MB, Pakzad SN, Dorvash S (2014) Localized structural damage detection: a change point analysis. Comput Aid Civ Infrastruct Eng 29(6):416–432

  88. Noh HY, Nair KK, Kiremidjian AS, Loh CH (2009) Application of time series based damage detection algorithms to the Benchmark experiment at the National Center for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan. Smart Struct Syst 5(1):95–117

    Article  Google Scholar 

  89. Osornio-Rios RA, Amezquita-Sanchez JP, Romero-Troncoso RJ, Garcia-Perez A (2012) MUSIC-ANN analysis for locating structural damages in a truss-type structure by means of vibrations. Comput Aid Civ Infrastruct Eng 27(9):687–698

    Article  Google Scholar 

  90. Pakrashi V, Ghosh B (2009) Application of S transform in structural health monitoring. In: NDTCE’09, Proceedings of the conference on non-destructive testing in civil engineering nantes, France, June 30th–July 3rd, 2009

  91. Pakrashi V, O’Connor A, Basu B (2007) A study on the effects of damage models and wavelet bases for damage identification and calibration in beams. Comput Aid Civ Infrastruct Eng 22(8):555–569

    Article  Google Scholar 

  92. Pines D, Salvino L (2006) Structural health monitoring using empirical mode decomposition and the Hilbert phase. J Sound Vib 294:97–124

    Article  Google Scholar 

  93. Poncelet F, Kerschen G, Golinval JC, Verhelst D (2007) Output-only modal analysis using blind source separation techniques. Mech Syst Signal Process 21:2335–2358

    Article  Google Scholar 

  94. Qiao L, Esmaeily A, Melhem HG (2012) Signal pattern–recognition for damage diagnosis in structures. Comput Aid Civ Infrastruct Eng 27(9):699–710

    Article  Google Scholar 

  95. Quek ST, Wang Q, Zhang L, Ang KK (2001) Sensitivity analysis of notch detection in beams by wavelet technique. Int J Mech Sci 43:2899–2910

  96. Raich AM, Liszkai TR (2012) Multi-objective optimization of sensor and excitation layouts for frequency response function-based structural damage identification. Comput Aid Civ Infrastruct Eng 27(2):95–117

    Article  Google Scholar 

  97. Ren WX, Sun ZS (2008) Structural damage identification by using wavelet entropy. Eng Struct 30(10):2840–2849

    Article  Google Scholar 

  98. Rezaei D, Taheri F (2010) Damage identification in beams using empirical mode decomposition. Struct Health Monit 10(3):261–274

    Article  Google Scholar 

  99. Rodriguez-Donate C, Romero-Troncoso RJ, Cabal-Yepez, Garcia-Perez G, Osornio-Rios RA (2010) Wavelet-based general methodology for multiple fault detection on induction motors at the startup vibration transient. J Vib Control 17(9):1299–1309

    Article  Google Scholar 

  100. Roshan-Ghias A, Shamsollahi M, Mobed M, Behzad M (2007) Estimation of modal parameters using bilinear joint time–frequency distributions. Mech Syst Signal Process 21(5):2125–2136

    Article  Google Scholar 

  101. Sankari Z, Adeli H, Adeli A (2012) Wavelet coherence model for diagnosis of Alzheimer’s disease. Clinical EEG Neurosci 43:268–278

    Article  Google Scholar 

  102. Shi W, Shan J, Lu X (2012) Modal identification of Shanghai World Financial Center both from free and ambient vibration response. Eng Struct 36:14–26

    Article  Google Scholar 

  103. Soyoz S, Feng M (2008) Instantaneous damage detection of bridge structures and experimental verification. Struct Control Health Monit 15:958–973

    Article  Google Scholar 

  104. Spanos PD, Giaralis A, Politis NP (2007) Time–frequency representation of earthquake accelerograms and inelastic structural response records using the adaptive chirplet decomposition and empirical mode decomposition. Soil Dynamics Earthq Eng 27(7):675–689

    Article  Google Scholar 

  105. Stockwell RG, Mansinha L, Lowe RP (1996) Localization of the complex spectrum: the S-transform. IEEE Trans Signal Process 44:998–1001

    Article  Google Scholar 

  106. Stoica P, Moses RL (1997) Introduction to spectral analysis. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  107. Tang JP, Chiou DJ, Chen CW, Chiang WL, Hsu WK, Chen CY, Liu TY (2011) A case study of damage detection in benchmark buildings using a Hilbert–Huang transform-based method. J Vib Control 17(4):623–636

    Article  MATH  Google Scholar 

  108. Tao H, Zain JM, Ahmed MM, Abdalla AN, Jing W (2012) A wavelet-based particle swarm optimization algorithm for digital image watermarking. Integr Comput Aid Eng 19(1):81–91

    Google Scholar 

  109. Theodoridis D, Boutalis Y, Christodoulou M (2012) Dynamical recurrent neuro-fuzzy identification schemes employing switching parameter hoping. Int J Neural Syst 22(2):1250004–1250016

    Article  Google Scholar 

  110. Torbol M, Gomez H, Feng M (2013) Fragility analysis of highway bridges based on long term monitoring data. Comput Aid Civ Infrastruct Eng 28(3):178–192

    Article  Google Scholar 

  111. Torres ME, Colominas MA, Schlotthauer G, Flandrin P (2011) A complete ensemble empirical mode decomposition with adaptive noise. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), Prague, Czech Republic, May 22–27, 2011, pp 4144–4147

  112. Umesha PK, Ravichandran R, Sivasubramanian K (2009) Crack detection and quantification in beams using wavelets. Comput Aid Civ Infrastruct Eng 24(8):593–607

    Article  Google Scholar 

  113. Ville J (1948) Theorie ef applications de la notion de signal analytique. Cables et Transmission A2:61–74

    Google Scholar 

  114. Wang L, McCullough M, Kareem A (2014) Modeling and simulation of nonstationay processes utilizing Wavelet and Hilbert transforms. ASCE J Eng Mech 140(2):345–360

    Article  Google Scholar 

  115. Wei Z, Yam LH, Cheng L (2005) NARMAX model representation and its application to damage detection for multi-layer composites. Compos Struct 68(1):109–117

    Article  Google Scholar 

  116. Wu M, Smyth AW (2007) Application of the unscented Kalman filter for real-time nonlinear structural system identification. Struct Control Health Monit 14:971–990

    Article  Google Scholar 

  117. Wu N, Wang Q (2011) Experimental studies on damage detection of beam structures with wavelet transform. Int J Eng Sci 49(3):253–261

    Article  Google Scholar 

  118. Wu Z, Huang N (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1(1):1–41

    Article  Google Scholar 

  119. Xiang J, Liang MM (2012) Wavelet-based detection of beam cracks using modal shape and frequency measurements. Comput Aid Civ Infrastruct Eng 27(6):439–454

    Article  Google Scholar 

  120. Yan B, Miyamoto A (2006) A comparative study of modal parameter identification based on Wavelet and Hilbert–Huang transforms. Comput Aid Civ Infrastruct Eng 21(1):9–23

    Article  Google Scholar 

  121. Yan G, Duan Z, Oua J, DeStefano A (2010) Structural damage detection using residual forces based on wavelet transform. Mech Syst Signal Process 24(1):224–239

    Article  Google Scholar 

  122. Yan L, Ma ZM (2012b) Comparison of entity with fuzzy data types in fuzzy object-oriented databases. Integr Comput Aid Eng 19(2):199–212

    MATH  MathSciNet  Google Scholar 

  123. Yan L, Ma ZM (2012a) Incorporating fuzzy information into the formal mapping from web data model to extended entity–relationship model. Integr Comput Aid Eng 19(4):313–330

    MathSciNet  Google Scholar 

  124. Yan L, Elgamal A, Cottrell G (2013) Substructure vibration NARX Neural network approach for statistical damage inference. ASCE J Eng Mech 139(6):737–747

    Article  Google Scholar 

  125. Yan WJ, Ren WX (2012) Operational modal parameter identification from power spectrum density transmissibility. Comput Aid Civ Infrastruct Eng 27(3):202–217

    Article  MathSciNet  Google Scholar 

  126. Yang JN, Lin S, Huang H, Zhou L (2006) An adaptive extended Kalman filter for structural damage identification. Struct Control Health Monit 13(4):849–867

    Article  Google Scholar 

  127. Yesilyurt I, Gursoy H (2013) Estimation of elastic and modal parameters in composites using vibration analysis. J Vibr Control. doi:10.1177/1077546313486275

  128. Yinfeng D, Yingmin L, Mingkui X, Ming L (2008) Analysis of earthquake ground motions using an improved Hilbert–Huang transform. Soil Dyn Earthq Eng 28(1):7–19

    Article  Google Scholar 

  129. Yuen K, Katafygiotis L (2005) Model updating using noisy response measurements without knowledge of the input spectrum. Earthq Eng Struct Dyn 34(2):167–187

    Article  Google Scholar 

  130. Zang C, Friswelll MI, Imregun M (2006) Structural damage detection using independent component analysis. Struct Health Monit 3(1):69–83

    Article  Google Scholar 

  131. Zhang J, Prader J, Grimmelsman KA, Moon F, Aktan AE, Shama A (2013) Experimental vibration analysis for structural identification of long-span suspension bridge. ASCE J Eng Mech 139(6):748–759

    Article  Google Scholar 

  132. Zhao Z, Wang Y (2007) Analysis of diastolic murmurs for coronary artery disease-based on Hilbert Huang transform. In: IEEE, International conference on machine learning and cybernetics, Hong Kong, China, 19–22 August 2007, vol 6, pp 3337–3342

  133. Zheng H, Mita A (2009) Localized damage detection of structures subject to multiple ambient excitations using two distance measures for autoregressive models. Struct Health Monit 8(3):207–222

    Article  Google Scholar 

  134. Zhou Z, Adeli H (2003a) Time–frequency signal analysis of earthquake records using Mexican hat wavelets. Comput Aid Civ Infrastruct Eng 18(5):379

    Article  Google Scholar 

  135. Zhou Z, Adeli H (2003b) Wavelet energy spectrum for time–frequency localization of earthquake energy. Int J Imaging Syst Technol 13(2):133–140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojjat Adeli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amezquita-Sanchez, J.P., Adeli, H. Signal Processing Techniques for Vibration-Based Health Monitoring of Smart Structures. Arch Computat Methods Eng 23, 1–15 (2016). https://doi.org/10.1007/s11831-014-9135-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9135-7

Keywords

Navigation