Skip to main content
Log in

Model Order Reduction for Linear and Nonlinear Systems: A System-Theoretic Perspective

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In the past decades, Model Order Reduction (MOR) has demonstrated its robustness and wide applicability for simulating large-scale mathematical models in engineering and the sciences. Recently, MOR has been intensively further developed for increasingly complex dynamical systems. Wide applications of MOR have been found not only in simulation, but also in optimization and control. In this survey paper, we review some popular MOR methods for linear and nonlinear large-scale dynamical systems, mainly used in electrical and control engineering, in computational electromagnetics, as well as in micro- and nano-electro-mechanical systems design. This complements recent surveys on generating reduced-order models for parameter-dependent problems (Benner et al. in 2013; Boyaval et al. in Arch Comput Methods Eng 17(4):435–454, 2010; Rozza et al. Arch Comput Methods Eng 15(3):229–275, 2008) which we do not consider here. Besides reviewing existing methods and the computational techniques needed to implement them, open issues are discussed, and some new results are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Achar R, Nakhla MS (2001) Simulation of high-speed interconnects. Proc IEEE 89(5):693–728

    Google Scholar 

  2. Al-Baiyat SA, Bettayeb M (1993) A new model reduction scheme for k-power bilinear systems. In: Proceedings of the 32nd IEEE conference on decision and control 1:22–27. doi:10.1109/CDC.1993.325196.

  3. Aldhaheri RW (1991) Model order reduction via real Schur-form decomposition. Int J Control 53(3):709–716

    MATH  MathSciNet  Google Scholar 

  4. Anderson BDO, Antoulas AC (1990) Rational interpolation and state-variable realizations. Linear Algebra Appl 137(138):479–509

    MathSciNet  Google Scholar 

  5. Antoulas AC (2005) Approximation of large-scale dynamical systems. SIAM Publications, Philadelphia

    MATH  Google Scholar 

  6. Antoulas AC, Sorensen DC, Gugercin S (2001) A survey of model reduction methods for large-scale systems. Contemp Math 280:193–219

    MathSciNet  Google Scholar 

  7. Antoulas AC, Sorensen DC, Zhou Y (2002) On the decay rate of Hankel singular values and related issues. Syst Control Lett 46(5):323–342

    MATH  MathSciNet  Google Scholar 

  8. Astrid P, Weiland S, Willcox K, Backx T (2008) Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans Autom Control 53(10):2237–2251

    MathSciNet  Google Scholar 

  9. Badía J, Benner P, Mayo R, Quintana-Ortí ES (2002) Solving large sparse Lyapunov equations on parallel computers. In: Monien B, Feldmann R (eds) Euro-Par 2002–parallel processing, no. 2400 in lecture notes in computer science, pp 687–690. Springer, Berlin.

  10. Badía JM, Benner P, Mayo R, Quintana-Ortí ES, Quintana-Ortí G, Remón A (2006) Balanced truncation model reduction of large and sparse generalized linear systems. Tech. Rep. Chemnitz Scientific Computing Preprints 06–04, Fakultät für Mathematik, TU Chemnitz.

  11. Bai Z (2002) Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl Numer Math 43(1–2):9–44

    MATH  MathSciNet  Google Scholar 

  12. Bai Z, Dewilde PM, Freund RW (2005) Reduced-order modeling. In: Handbook of numerical analysis. Vol. XIII, Handb. Numer. Anal., XIII, pp 825–891. North-Holland, Amsterdam.

  13. Bai Z, Feldmann P, Freund RW (1998) How to make theoretically passive reduced-order models passive in practice. In: Proceedings of the IEEE 1998 custom integrated circuits conference, pp 207–210. IEEE.

  14. Bai Z, Freund RW (2001) A partial Padé-via-Lanczos method for reduced-order modeling. In: Proceedings of the eighth conference of the international linear algebra society (Barcelona, 1999), vol. 332/334, pp 139–164.

  15. Bai Z, Freund RW (2001) A symmetric band Lanczos process based on coupled recurrences and some applications. SIAM J Sci Comput 23(2):542–562 (electronic).

  16. Bai Z, Skoogh D (2006) A projection method for model reduction of bilinear dynamical systems. Linear Algebra Appl 415(2–3):406–425

    MATH  MathSciNet  Google Scholar 

  17. Bai Z, Slone RD, Smith WT, Ye Q (1999) Error bound for reduced system model by Padé approximation via the Lanczos process. IEEE Trans Comput-Aided Des Integr Circuits Syst 18(2):133–141

    Google Scholar 

  18. Bai Z, Su YF (2005) Dimension reduction of large-scale second-order dynamical systems via a second-order Arnoldi method. SIAM J Sci Comput 26(5):1692–1709

    MATH  MathSciNet  Google Scholar 

  19. Baker G (1975) Essentials of Padé approximation. Academic Press, London

    Google Scholar 

  20. Barrachina S, Benner P, Quintana-Ortí ES, Quintana-Ortí G (2005) Parallel algorithms for balanced truncation of large-scale unstable systems. In: Proceedings of 44th IEEE conference decision control ECC 2005, pp 2248–2253.

  21. Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C R Acad Sci Paris Ser I 339:667–672

    MATH  MathSciNet  Google Scholar 

  22. Baur U, Benner P (2006) Factorized solution of Lyapunov equations based on hierarchical matrix arithmetic. Computing 78(3):211–234

    MATH  MathSciNet  Google Scholar 

  23. Baur U, Benner P (2008) Cross-gramian based model reduction for data-sparse systems. Electron Trans Numer Anal 31:256– 270

  24. Baur U, Benner P (2008) Gramian-based model reduction for data-sparse systems. SIAM J Sci Comput 31(1):776–798

    MATH  MathSciNet  Google Scholar 

  25. Bechtold T, Rudnyi EB, Korvink JG (2005) Error indicators for fully automatic extraction of heat-transfer macromodels for MEMS. J Micromech Microeng 15(3):430–440

    Google Scholar 

  26. Benner P (2004) Solving large-scale control problems. IEEE Control Syst Mag 14(1):44–59

    MathSciNet  Google Scholar 

  27. Benner P (2010) Advances in balancing-related model reduction for circuit simulation. In: Roos J, Costa L (eds) Scientific computing in electrical engineering SCEE 2008, mathematics in industry, vol 14. Springer, Berlin, pp 469–482

  28. Benner P, Breiten T (2012) Interpolation-based \(h_2\)-model reduction of bilinear control systems. SIAM J Matrix Anal Appl 33(3):859–885

    MATH  MathSciNet  Google Scholar 

  29. Benner P, Breiten T (2012) Krylov-subspace based model reduction of nonlinear circuit models using bilinear and quadratic-linear approximations. In: Günther M, Bartel A, Brunk M, Schöps S, Striebel M (eds) Progress in industrial mathematics at ECMI 2010, mathematics in industry, vol 17. Springer, Berlin, pp 153–159

    Google Scholar 

  30. Benner P, Breiten T (2012) Two-sided moment matching methods for nonlinear model reduction. Preprint MPIMD/12-12, Max Planck Institute Magdeburg Preprints. Available from http://www.mpi-magdeburg.mpg.de/preprints/

  31. Benner P, Breiten T (2013) Low rank methods for a class of generalized Lyapunov equations and related issues. Numer Math 124(3):441–470

    MATH  MathSciNet  Google Scholar 

  32. Benner P, Breiten T (2013) On optimality of approximate low rank solutions of large-scale matrix equations. Syst Control Lett 67(1):55–64

    MathSciNet  Google Scholar 

  33. Benner P, Castillo M, Quintana-Ortí ES, Quintana-Ortí G (2004) Parallel model reduction of large-scale unstable systems. In: Joubert G, Nagel W, Peters F, Walter W (eds) Parallel computing: software technology, algorithms, architectures & applications. Proceedings of International Conference ParCo2003, Dresden, Germany, Advances in Parallel Computing, vol. 13, pp 251–258. Elsevier BV (North-Holland).

  34. Benner P, Claver JM, Quintana-Ortí ES (1998) Efficient solution of coupled Lyapunov equations via matrix sign function iteration. In: Dourado A et al. (ed) Proceedings of 3rd Portuguese conference on automatic control CONTROLO’98, Coimbra, pp 205–210.

  35. Benner P, Damm T (2011) Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM J Control Optim 49(2):686–711

    MATH  MathSciNet  Google Scholar 

  36. Benner P, Ezzatti P, Kressner D, Quintana-Ortí ES, Remón A: A mixed-precision algorithm for the solution of Lyapunov equations on hybrid CPU-GPU platforms. Parallel Comput 37(8):439–450 (2011). doi:10.1016/j.parco.2010.12.002. http://www.sciencedirect.com/science/article/pii/S0167819110001560

  37. Benner P, Gugercin S, Willcox K (2013) A survey of model reduction methods for parametric systems. Preprint MPIMD/13-14, Max Planck Institute Magdeburg Preprints. Available from http://www.mpi-magdeburg.mpg.de/preprints/

  38. Benner P, Kürschner P, Saak J (2012) A goal-oriented dual LRCF-ADI for balanced truncation. In: Troch I, Breitenecker F (eds) 7th Vienna international conference on mathematical modelling, IFAC-PapersOnlines, mathematical modelling, vol. 7, pp. 752–757. Vienna Univ. of Technology.

  39. Benner P, Kürschner P, Saak J (2013) An improved numerical method for balanced truncation for symmetric second order systems. Math Comput Model Dyn Syst 19(6):593–615. doi:10.1080/13873954.2013.794363

    MathSciNet  Google Scholar 

  40. Benner P, Li JR, Penzl T (2008) Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems. Numer Algorithms 15(9):755–777

    MATH  MathSciNet  Google Scholar 

  41. Benner P, Mehrmann V, Sorensen DC (eds) (2005) Dimension reduction oflarge-scale systems, vol 45., lecture notes in computational science and engineeringSpringer, Berlin

  42. Benner P, Quintana-Ortí ES: Model reduction based on spectral projection methods. Chapter 1 (pp 5–48) of [41].

  43. Benner P, Quintana-Ortí ES (1999) Solving stable generalized Lyapunov equations with the matrix sign function. Numer Algorithms 20(1):75–100

  44. Benner P, Quintana-Ortí ES, Quintana-Ortí G (1999) A portable subroutine library for solving linear control problems on distributed memory computers. In: Cooperman G, Jessen E, Michler G (eds) Workshop on Wide Area Networks and high performance computing, Essen (Germany), September 1998. Lecture notes in control and information Springer, Berlin, pp 61–88

    Google Scholar 

  45. Benner P, Quintana-Ortí ES, Quintana-Ortí G (2000) Balanced truncation model reduction of large-scale dense systems on parallel computers. Math Comput Model Dyn Syst 6(4):383– 405

  46. Benner P, Quintana-Ortí ES, Quintana-Ortí G (2000) Singular perturbation approximation of large, dense linear systems. Proceedings of 2000 IEEE international symposium CACSD, Anchorage, Alaska, USA, September 25–27, 2000. IEEE Press, Piscataway, pp 255–260

  47. Benner P, Quintana-Ortí ES, Quintana-Ortí G (2001) Efficient numerical algorithms for balanced stochastic truncation. Int J Appl Math Comput Sci 11(5):1123–1150

    MATH  MathSciNet  Google Scholar 

  48. Benner P, Quintana-Ortí ES, Quintana-Ortí G (2003) State-space truncation methods for parallel model reduction of large-scale systems. Parallel Comput 29:1701–1722

    MathSciNet  Google Scholar 

  49. Benner P, Quintana-Ortí ES, Quintana-Ortí G (2004) Computing optimal Hankel norm approximations of large-scale systems. Proceedings of 43rd IEEE conference decision Control. Omnipress, Madison, WI, pp 3078–3083

    Google Scholar 

  50. Benner P, Schneider A (2012) Model reduction for linear descriptor systems with many ports. In: Günther M, Bartel A, Brunk M, Schöps S, Striebel M (eds) Progress in industrial mathematics at ECMI 2010, mathematics in industry, vol 17. Springer, Berlin, pp 137–143

    Google Scholar 

  51. Bollhöfer M, Bodendiek A (2012) Adaptive-order rational Arnoldi method for Maxwell’s equations. In: Scientific computing in electrical engineering (Abstracts), pp 77–78.

  52. Bond B, Daniel L (2005) Parameterized model order reduction of nonlinear dynamical systems. In: Proceedings of international conference on computer-aided design, pp 487–494.

  53. Bond B, Daniel L (2009) Stable reduced models for nonlinear descriptor systems through piecewise-linear approximation and projection. IEEE Trans Comput-Aided Des Integr Circuits Syst 28(10):1467–1480

    Google Scholar 

  54. Boyaval S, Le Bris C, Lelièvre T, Maday Y, Nguyen NC, Patera AT (2010) Reduced basis techniques for stochastic problems. Arch Comput Methods Eng 17(4):435–454. doi:10.1007/s11831-010-9056-z

    MATH  MathSciNet  Google Scholar 

  55. Breiten T, Damm T (2010) Krylov subspace methods for model order reduction of bilinear control systems. Syst Control Lett 59(10):443–450

    MATH  MathSciNet  Google Scholar 

  56. Bunse-Gerstner A, Kubalinska D, Vossen G, Wilczek D (2010) \(h_2\)-norm optimal model reduction for large scale discrete dynamical MIMO systems. J Comput Appl Math 233(5):1202–1216. doi: 10.1016/j.cam.2008.12.029

    MATH  MathSciNet  Google Scholar 

  57. Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32(5):2737–2764

    MATH  MathSciNet  Google Scholar 

  58. Chen Y (1999) Model order reduction for nonlinear systems. Master’s thesis, Massachusetts Institute of Technology.

  59. Chiprout E, Nakhla M (1995) Analysis of interconnect networks using complex frequency hopping (CFH). IEEE Trans Comput-Aided Des Integr Circuits Syst 14(2):186–200

    Google Scholar 

  60. Chu CC, Lai MH, Feng WS (2006) MIMO interconnects order reductions by using the multiple point adaptive-order rational global Arnoldi algorithm. IEICE Trans Electron E89-C(6):792–802.

  61. Condon M, Ivanov R (2007) Krylov subspaces from bilinear representations of nonlinear systems. COMPEL Math Electr Electron Eng 26(2):399–406

    MATH  MathSciNet  Google Scholar 

  62. Craig RR, Bampton MCC (1968) Coupling of substructures for dynamic analysis. AIAA J 6:1313–1319

    MATH  Google Scholar 

  63. Davison EJ (1966) A method for simplifying linear dynamic systems. IEEE Trans Autom Control AC-11:93–101.

  64. Druskin V, Knizhnerman L, Simoncini V (2011) Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation. SIAM J Numer Anal 49(5):1875–1898

    MATH  MathSciNet  Google Scholar 

  65. Dong N, Roychowdhury J (2003) Piecewise polynomial nonlinear model reduction. In: Proceedings of design automation conference, pp 484–489.

  66. Dong N, Roychowdhury J (2004) Automated extraction of broadly applicable nonlinear analog macromodels from SPICE-level descriptions. In: Custom integrated circuits conference, 2004. Proceedings of the IEEE 2004, pp 117–120.

  67. Druskin V, Simoncini V (2011) Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst Control Lett 60:546–560

    MATH  MathSciNet  Google Scholar 

  68. Enns D (1984) Model reduction with balanced realization: an error bound and a frequency weighted generalization. Proceedings of 23rd IEEE conference decision control. Las Vegas, NV, pp 127–132

    Google Scholar 

  69. Eppler A, Bollhöfer M (2010) An alternative way of solving large Lyapunov equations. Proc Appl Math Mech 10(1):547–548

    Google Scholar 

  70. Eppler A, Bollhöfer M (2012) Structure-preserving GMRES methods for solving large Lyapunov equations. In: Günther M, Bartel A, Brunk M, Schöps S, Striebel M (eds) Progress in industrial mathematics at ECMI 2010, mathematics in industry, vol 17. Springer, Berlin, pp 131–136

    Google Scholar 

  71. Faßbender H, Soppa A (2011) Machine tool simulation based on reduced order FE models. Math Comput Simul 82(3):404–413

    MATH  Google Scholar 

  72. Feldmann P, Freund RW (1994) Efficient linear circuit analysis by Padé approximation via the Lanczos process. In: Proceedings of EURO-DAC ’94 with EURO-VHDL ’94, Grenoble, France, pp 170–175. IEEE Computer Society Press.

  73. Feldmann P, Freund RW (1995) Efficient linear circuit analysis by Padé approximation via the Lanczos process. IEEE Trans Comput-Aided Des Integr Circuits Syst 14:639–649

    Google Scholar 

  74. Feldmann P, Liu F (2004) Sparse and efficient reduced order modeling of linear subcircuits with large number of terminals. In: Proceedings of international conference on computer-aided design, pp 88–92.

  75. Feng L, Benner P (2007) A note on projection techniques for model order reduction of bilinear systems. In: Numerical analysis and applied mathematics: international conference of numerical analysis and applied mathematics, pp 208–211.

  76. Feng L, Benner P (2012) Automatic model order reduction by moment-matching according to an efficient output error bound. In: Scientific computing in electrical engineering (Abstracts), pp 71–72.

  77. Feng L, Benner P, Korvink JG (2013) System-level modeling of MEMS by means of model order reduction (mathematical approximation)-mathematical background. In: Bechtold T, Schrag G, Feng L (eds) System-level modeling of MEMS, advanced micro & nanosystems. Wiley-VCH

  78. Feng L, Korvink JG, Benner P (2012) A fully adaptive scheme for model order reduction based on moment-matching. Preprint MPIMD/12-14, Max Planck Institute Magdeburg Preprints. Available from http://www.mpi-magdeburg.mpg.de/preprints/

  79. Feng L, Zeng X, Chiang C, Zhou D, Fang Q (2004) Direct nonlinear order reduction with variational analysis. In: Proceedings of design automation and test in Europe, pp 1316–1321.

  80. Fernando KV, Hammarling SJ (1988) A product induced singular value decmoposition for two matrices and balanced realization. In: Datta B et al (eds) Linear algebra in signals, systems and control. SIAM, Philadelphia, pp 128–140

    Google Scholar 

  81. Fernando KV, Nicholson H (1983) On the structure of balanced and other principal representations of SISO systems. IEEE Trans Autom Control 28(2):228–231

    MATH  MathSciNet  Google Scholar 

  82. Fernando KV, Nicholson H (1984) On a fundamental property of the cross-Gramian matrix. IEEE Trans Circuits Syst CAS-31(5):504–505.

  83. Flagg GM (2010) H2-optimal interpolation: new properties and applications. In: Talk given at the, (2010) SIAM annual meeting. Pittsburgh, PA

  84. Flagg GM (2012) Interpolation methods for the model reduction of bilinear systems. Ph.D. thesis, Virginia Polytechnic Institute and State University.

  85. Flagg GM, Beattie CA, Gugercin S (2013) Interpolatory \({\cal H}_\infty \) model reduction. Syst Control Lett 62(7):567–574

    MATH  MathSciNet  Google Scholar 

  86. Flagg GM, Gugercin S (2013) On the ADI method for the Sylvester equation and the optimal-\({\cal H}_2\) points. Appl Numer Math 64:50–58

  87. Fortuna L, Nummari G, Gallo A (1992) Model order reduction techniques with applications in electrical engineering. Springer, Berlin

    Google Scholar 

  88. Freund RW (2000) Krylov subspace methods for reduced-order modeling in circuit cimulation. J Comput Appl Math 123:395–421

    MATH  MathSciNet  Google Scholar 

  89. Freund RW (2003) Model reduction methods based on Krylov subspaces. Acta Numer 12:267–319

    MATH  MathSciNet  Google Scholar 

  90. Freund RW (2004) SPRIM: structure-preserving reduced-order interconnect macromodeling. In.Technical digest of the 2004 IEEE/ACM international conference on computer-aided design, pp 80–87. IEEE Computer Society Press.

  91. Freund RW, Feldmann P (1996) Reduced-order modeling of large passive linear circuits by means of the SyPVL algorithm. In: Technical digest of the 1996 IEEE/ACM international conference on computer-aided design, pp 280–287. IEEE Computer Society Press.

  92. Freund RW, Feldmann P (1997) The SyMPVL algorithm and its applications to interconnect simulation. In: Proceedings of the 1997 international conference on simulation of semiconductor processes and devices, pp. 113–116. IEEE.

  93. Freund RW, Feldmann P (1998) Reduced-order modeling of large linear passive multi-terminal circuits using matrix-Padé approximation. In: Proceedings of the design, automation and test in Europe conference 1998, pp 530–537. IEEE Computer Society Press.

  94. Gallivan K, Grimme E, Van Dooren P (1994) Asymptotic waveform evaluation via a Lanczos method. Appl Math Lett 7(5):75–80

    MATH  MathSciNet  Google Scholar 

  95. Gawronski W, Juang JN (1990) Model reduction in limited time and frequency intervals. Int J Syst Sci 21(2):349–376

    MATH  MathSciNet  Google Scholar 

  96. Glover K (1984) All optimal Hankel-norm approximations of linear multivariable systems and their L\(^{\infty }\) norms. Int J Control 39:1115–1193

    MATH  MathSciNet  Google Scholar 

  97. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  98. Gragg WB, Lindquist A (1983) On the partial realization problem. Linear Algebra Appl 50:277–319

    MATH  MathSciNet  Google Scholar 

  99. Grasedyck L (2004) Existence of a low rank or \({\cal H}\)-matrix approximant to the solution of a Sylvester equation. Numer Linear Algebra Appl 11(4):371–389

    MATH  MathSciNet  Google Scholar 

  100. Grasedyck L, Hackbusch W (2007) A multigrid method to solve large scale Sylvester equations. SIAM J Matrix Anal Appl 29(3):870–894

    MATH  MathSciNet  Google Scholar 

  101. Grasedyck L, Hackbusch W, Khoromskij BN (2003) Solution of large scale algebraic matrix Riccati equations by use of hierarchical matrices. Computing 70(2):121–165

    MATH  MathSciNet  Google Scholar 

  102. Grepl MA, Maday Y, Nguyen NC, Patera AT (2007) Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: Math Model Numer 41(03):575–605.

  103. Grimme EJ (1997) Krylov projection methods for model reduction. Ph.D. thesis, Univ. Illinois, Urbana-Champaign.

  104. Grimme EJ, Sorensen DC, Van Dooren P (1996) Model reduction of state space systems via an implicitly restarted Lanczos method. Numer Algorithms 12:1–31

    MATH  MathSciNet  Google Scholar 

  105. Gu C (2009) QLMOR: A new projection-based approach for nonlinear model order reduction. In: Proceedings of international conference on computer-aided design, pp 389–396.

  106. Gu C (2011) QLMOR: a projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems. IEEE Trans Comput-Aided Des 30(9):1307–1320

    Google Scholar 

  107. Gugercin S, Antoulas AC (2004) A survey of model reduction by balanced truncation and some new results. Int J Control 77(8):748–766

    MATH  MathSciNet  Google Scholar 

  108. Gugercin S, Antoulas AC, Beattie CA (2008) \({\cal H}_2\) model reduction for large-scale linear dynamical systems. SIAM J Matrix Anal Appl 30(2):609–638

    MATH  MathSciNet  Google Scholar 

  109. Gugercin S, Li JR, Smith-type methods for balanced truncation of large systems. Chapter 2 (pp 49–82) of [41].

  110. Gugercin S, Sorensen DC, Antoulas AC (2003) A modified low-rank Smith method for large-scale Lyapunov equations. Numer Algorithms 32(1):27–55

    MATH  MathSciNet  Google Scholar 

  111. Heath MT, Laub AJ, Paige CC, Ward RC (1987) Computing the SVD of a product of two matrices. SIAM J Sci Stat Comput 7:1147–1159

    MathSciNet  Google Scholar 

  112. Heinkenschloss M, Reis T, Antoulas AC (2011) Balanced truncation model reduction for systems with inhomogeneous initial conditions. Automatica 47:559–564

    MATH  MathSciNet  Google Scholar 

  113. Hochbruck M, Starke G (1995) Preconditioned Krylov subspace methods for Lyapunov matrix equations. SIAM J Matrix Anal Appl 16(1):156–171

    MATH  MathSciNet  Google Scholar 

  114. Hochman A, Vasilyev DM, Rewieński MJ, White JK (2013) Projection-based nonlinear model order reduction. In: Bechtold T, Schrag G, Feng L (eds) System-level modeling of MEMS, advanced micro & nanosystems. Wiley-VCH

  115. Hodel AS, Tenison B, Poolla KR (1996) Numerical solution of the Lyapunov equation by approximate power iteration. Linear Algebra Appl 236:205–230

    MATH  MathSciNet  Google Scholar 

  116. Hu DY, Reichel L (1992) Krylov-subspace methods for the Sylvester equation. Linear Algebra Appl 172:283–313

    MATH  MathSciNet  Google Scholar 

  117. Ito K, Kunisch K (2006) Reduced order control based on approximate inertial manifolds. Linear Algebra Appl 415(2–3):531–541

    MATH  MathSciNet  Google Scholar 

  118. Jaimoukha IM, Kasenally EM (1994) Krylov subspace methods for solving large Lyapunov equations. SIAM J Numer Anal 31(1):227–251

    MATH  MathSciNet  Google Scholar 

  119. Jaimoukha IM, Kasenally EM (1997) Implicitly restarted Krylov subspace methods for stable partial realizations. SIAM J Matrix Anal Appl 18(3):633–652

    MATH  MathSciNet  Google Scholar 

  120. Jbilou K, Riquet AJ (2006) Projection methods for large Lyapunov matrix equations. Linear Algebra Appl 415:344–358

    MATH  MathSciNet  Google Scholar 

  121. Kamon M, Wang F, White J (2000) Generating nearly optimally compact models from krylov-subspace based reduced-order models. IEEE Trans Circuits Syst 47(4):239–248

    Google Scholar 

  122. Kerns KJ, Wemple IL, Yang AT (1995) Stable and efficient reduction of substrate model networks using congruence transforms. ICCAD ’95: proceedings of the 1995 IEEE/ACM international conference on Computer-aided design. DC, USA, Washington, pp 207–214

    Google Scholar 

  123. Konkel Y, Farle O, Dyczij-Edlinger R (2008) Ein Fehlerschätzer für die Krylov-Unterraum basierte Ordnungsreduktion zeitharmonischer Anregungsprobleme (in German). In: Lohmann B, Kugi A (eds) Tagungsband GMA-FA 1.30, ’Modellbildung, Identifikation und Simulation in der Automatisierungstechnik’, pp 139–149.

  124. Konkel Y, Farle O, Sommer A, Burgard S, Dyczij-Edlinger R (2014) A posteriori error bounds for Krylov-based fast frequency sweeps of finite-element systems. IEEE Trans Magn 50(2):441–444

    Google Scholar 

  125. Kressner D (2005) Numerical methods for general and structured eigenvalue problems, vol 46., lecture notes in computational science and engineeringSpringer, Berlin

  126. Kressner D, Tobler C (2010) Krylov subspace methods for linear systems with tensor product structure. SIAM J Matrix Anal Appl 31(4):1688–1714

  127. Lancaster P (1970) Explicit solutions of linear matrix equations. SIAM Rev 12:544–566

    MATH  MathSciNet  Google Scholar 

  128. Laub AJ, Heath MT, Paige CC, Ward RC (1987) Computation of system balancing transformations and other application of simultaneous diagonalization algorithms. IEEE Trans Autom Control 34:115–122

    Google Scholar 

  129. Laub AJ, Silverman LM, Verma M (1983) A note on cross-Grammians for symmetric realizations. Proc IEEE Trans Circuits Syst 71(7):904–905

    Google Scholar 

  130. Lee H, Chu C, Feng W (2006) An adaptive-order rational Arnoldi method for model-order reductions of linear time-invariant systems. Linear Algebra Appl 415(23):235–261

    MATH  MathSciNet  Google Scholar 

  131. Li JR, Wang F, White J (1999) An efficient Lyapunov equation-based approach for generating reduced-order models of interconnect. In. Proceedings of design automation conference, pp 1–6.

  132. Li JR, White J (2001) Reduction of large circuit models via low rank approximate gramians. Int J Appl Math Comput Sci 11(5):1151–1171

    MATH  MathSciNet  Google Scholar 

  133. Li JR, White J (2002) Low rank solution of Lyapunov equations. SIAM J Matrix Anal Appl 24(1):260–280

    MathSciNet  Google Scholar 

  134. Li P, Pileggi LT (2003) NORM: compact model order reduction of weakly nonlinear systems. In: Proceedings of design automation conference, pp 472–477.

  135. Li P, Shi W (2006) Model order reduction of linear networks with massive ports via frequency-dependent port packing. In: Proceedings of international conference on computer-aided design, pp 267–272.

  136. Li R, Bai Z (2005) Structure-preserving model reduction using a Krylov subspace projection formulation. Commun Math Sci 3(2):179–199

    MATH  MathSciNet  Google Scholar 

  137. Lin Y, Bao L, Wei Y (2007) A model-order reduction method based on Krylov subspace for MIMO bilinear dynamical systems. J Appl Math Comput 25(1–2):293–304

    MathSciNet  Google Scholar 

  138. Lin Y, Simoncini V (2013) Minimal residual methods for large scale Lyapunov equations. Appl Numer Math 72:52–71

    MATH  MathSciNet  Google Scholar 

  139. Liu P, Tan XD, Li H, Qi Z, Kong J, McGaughy B, He L (2005) An efficient method for termical reduction of interconnect circuits considering delay variations. In: Proceedings of international conference on computer-aided design, pp 820–825.

  140. Liu WQ, Sreeram V (2000) Model reduction of singular systems. In: Proceedings of 39th IEEE conference on decision and control 2000, pp 2373–2378.

  141. Liu Y, Anderson BDO (1986) Controller reduction via stable factorization and balancing. Int J Control 44:507–531

    MATH  Google Scholar 

  142. Marschall SA (1966) An approximate method for reducing the order of a linear system. Control Eng. 10:642–648

    Google Scholar 

  143. Mehrmann V, Stykel T. Balanced truncation model reduction for large-scale systems in descriptor form. Chapter 3 (pp 83–115) of [41].

  144. Moore BC (1981) Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans Autom Control AC-26:17–32.

  145. Mullis C, Roberts RA (1976) Synthesis of minimum roundoff noise fixed point digital filters. IEEE Trans Circuits Syst CAS-23(9):551–562.

  146. Nakhla N, Nakhla MS, Achar R (2007) Sparse and passive reduction of massively coupled large multiport interconnects. In: Proceedings of international conference on computer-aided design, pp 622–626.

  147. Nguyen N, Patera AT, Peraire J (2008) A best points interpolation method for efficient approximation of parametrized functions. Int J Numer Methods Eng 73(4):521–543

    MATH  MathSciNet  Google Scholar 

  148. Nouy A (2009) Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch Comput Methods Eng 16(3):251–285. doi:10.1007/s11831-009-9034-5

    MathSciNet  Google Scholar 

  149. Odabasioglu A, Celik M, Pileggi LT (1998) PRIMA: passive reduced-order interconnect macromodeling algorithm. IEEE Trans Comput-Aided Des Integr Circuits Syst 17(8):645–654

    Google Scholar 

  150. Opmeer MR (2012) Model order reduction by balanced proper orthogonal decomposition and by rational interpolation. IEEE Trans Autom Control 57(2):472–477

    MathSciNet  Google Scholar 

  151. Panzer H, Jaensch S, Wolf T, Lohmann B (2013) A greedy rational Krylov method for h2-pseudooptimal model order reduction with preservation of stability. In: Proceedings of the American control conference, pp 5512–5517.

  152. Panzer H, Wolf T, Lohmann B (2013) \(H_2\) and \(H_{\infty }\) error bounds for model order reduction of second order systems by Krylov subspace methods. In: Proceedings of the European control conference, pp 4484–4489.

  153. Penzl T (1997) A multi-grid method for generalized Lyapunov equations. Tech. Rep. SFB393/97-24, Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz, FRG. Available from http://www.tu-chemnitz.de/sfb393/sfb97pr.html

  154. Penzl T (1999) /00) A cyclic low-rank Smith method for large sparse Lyapunov equations. SIAM, J Sci Comput 21(4):1401–1418

    MathSciNet  Google Scholar 

  155. Penzl T (2000) Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Syst Control Lett 40:139–144

    MATH  MathSciNet  Google Scholar 

  156. Penzl T (2006) Algorithms for model reduction of large dynamical systems. Linear Algebra Appl 415(2–3):322–343 Reprint of Technical Report SFB393/99-40, TU Chemnitz, 1999.

  157. Perev K, Shafai B (1994) Balanced realization and model reduction of singular systems. Int J Syst Sci 25(6):1039–1052

    MATH  MathSciNet  Google Scholar 

  158. Pernebo L, Silverman LM (1982) Model reduction via balanced state space representations. IEEE Trans Autom Control 27(2):382–387

    MATH  MathSciNet  Google Scholar 

  159. Phillips JR (2000) Projection frameworks for model reduction of weakly nonlinear systems. In: Proceedings of design automation conference, pp 184–189.

  160. Phillips JR (2003) Projection-based approaches for model reduction of weakly nonlinear time-varying systems. IEEE Trans Comput-Aided Des Integr Circuits Syst 22(2):171–187

    Google Scholar 

  161. Phillips JR, Daniel L, Silveira LM (2003) Guaranteed passive balancing transformations for model order reduction. IEEE Trans Comput-Aided Des Integr Circuits Syst 22(8):1027–1041

    Google Scholar 

  162. Phillips JR, Silveira LM (2005) Poor man’s TBR: a simple model reduction scheme. IEEE Trans Comput-Aided Des Integr Circuits Syst 24(1):43–55

    Google Scholar 

  163. Pillage LT, Rohrer RA (1990) Asymptotic waveform evaluation for timing analysis. IEEE Trans Comput-Aided Des 9:325–366

    Google Scholar 

  164. Rabiei P, Pedram M (1999) Model order reduction of large circuits using balanced truncation. In: Proceedings of Asia and South Pacific design automation conference pp 237–240.

  165. Reis T, Stykel T (2010) Positive real and bounded real balancing for model reduction of descriptor systems. Int J Control 83(1):74–88

    MATH  MathSciNet  Google Scholar 

  166. Rewieński M, White J (2003) A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans Comput-Aided Des Integr Circuits Syst 22(2):155–170

    Google Scholar 

  167. Rewieński M, White J (2006) Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations. Linear Algebra Appl 415(2–3):426–454

    MATH  MathSciNet  Google Scholar 

  168. Rosen IG, Wang C (1995) A multi-level technique for the approximate solution of operator Lyapunov and algebraic Riccati equations. SIAM J Numer Anal 32(2):514–541

    MATH  MathSciNet  Google Scholar 

  169. Roychowdhury J (1999) Reduced-order modeling of time-varying system. IEEE Trans Circuits Syst II 46(10):1273–1288

    Google Scholar 

  170. Rozza G, Huynh DBP, Patera AT (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch Comput Methods Eng 15(3):229–275. doi:10.1007/s11831-008-9019-9

    MATH  MathSciNet  Google Scholar 

  171. Rugh WJ (1981) Nonlinear system theory. The Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  172. Saad Y (1990) Numerical solution of large Lyapunov equations. In: Kaashoek MA, van Schuppen JH, Ran ACM (eds) Signal processing, scattering, operator theory and numerical methods. Birkhäuser, pp 503–511.

  173. Safonov MG, Chiang RY (1989) A Schur method for balanced truncation model reduction. IEEE Trans Autom Control 34(7):729–733

    MATH  MathSciNet  Google Scholar 

  174. Salimbahrami B, Lohmann B (2006) Order reduction of large scale second-order systems using Krylov subspace methods. Linear Algebra Appl 415(2):385–405

    MATH  MathSciNet  Google Scholar 

  175. Saraswat D, Achar R, Nakhla MS (2005) Projection based fast passive compact macromodeling of high-speed VLSI circuits and interconnects. In: Proceedings of 18th international conference VLSI design 2005, pp 629–633.

  176. Sastry S (1999) Nonlinear systems: analysis, stability, and control, interdisciplinary applied mathematics, vol 10. Springer, New York

    Google Scholar 

  177. Siebert WM (1986) Circuits, signals, and systems. MIT Press, Cambridge

    Google Scholar 

  178. Silveira LM, Kamon M, Elfadel I, White J (1996) A coordinate-transformed Arnoldi algorithm for generating guaranteed stable reduced order models of arbitrary RLC circuits. In: Proceedings of international conference on computer-aided design, pp 288–294.

  179. Silveira LM, Phillips JR (2004) Exploiting input information in a model reduction algorithm for massively coupled parasitic networks. In: Proceedings of design automation conference, pp 385–388.

  180. Simoncini V (2007) A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J Sci Comput 29(3):1268–1288

    MATH  MathSciNet  Google Scholar 

  181. Simoncini V, Druskin V (2009) Convergence analysis of projection methods for the numerical solution of large Lyapunov equations. SIAM J Numer Anal 47(2):828–843

    MATH  MathSciNet  Google Scholar 

  182. Sorensen DC, Antoulas AC (2002) The Sylvester equation and approximate balanced reduction. Linear Algebra Appl 351(352):671–700

    MathSciNet  Google Scholar 

  183. Sorensen DC, Zhou Y (2002) Bounds on eigenvalue decay rates and sensitivity of solutions to Lyapunov equations. Tech. Rep. TR02-07, Dept. of Comp. Appl. Math., Rice University, Houston, TX. Available online from http://www.caam.rice.edu/caam/trs/tr02.html#TR02-07

  184. Stykel T (2004) Gramian-based model reduction for descriptor systems. Math Control Signals Syst 16(4):297–319

    MATH  MathSciNet  Google Scholar 

  185. Stykel T (2006) Balanced truncation model reduction for semidiscretized Stokes equation. Linear Algebra Appl 415(2–3):262–289

    MATH  MathSciNet  Google Scholar 

  186. Su YF, Wang J, Zeng X, Bai Z, Chiang C, Zhou D (2004) SAPOR: second-order Arnoldi method for passive order reduction of RCS circuits. In: Proceedings of international conference on computer-aided design, pp 74–79.

  187. Tiwary SK, Rutenbar RA (2005) Scalable trajectory methods for on-demand analog macromodel extraction. In: Proceedings of design automation conference, pp 403–408.

  188. Tombs MS, Postlethwaite I (1987) Truncated balanced realization of a stable non-minimal state-space system. Int J Control 46(4):1319–1330

    MATH  MathSciNet  Google Scholar 

  189. The MathWorks Inc, http://www.matlab.com

  190. Van Dooren P (2000) Gramian based model reduction of large-scale dynamical systems. In: Griffiths D, Watson G (eds) Numerical analysis 1999. Proceedings of 18th Dundee Biennial conference on numerical analysis, pp 231–247. London.

  191. Van Dooren P, Gallivan KA, Absil PA (2008) \({{\cal H}}_2\)-optimal model reduction of MIMO systems. Appl Math Lett 21(12):1267–1273

    MATH  MathSciNet  Google Scholar 

  192. Vandereycken B, Vandewalle S (2010) A Riemannian optimization approach for computing low-rank solutions of Lyapunov equations related databases. SIAM J Matrix Anal Appl 31(5):2553–2579

    MATH  MathSciNet  Google Scholar 

  193. Varga A (1991) Efficient minimal realization procedure based on balancing. Preparation of the IMACS symposium on modelling and control of technological systems 2:42–47

    Google Scholar 

  194. Vasilyev D, Rewieński M, White J (2003) A TBR-based trajectory piecewise-linear algorithm for generating accurate low-order models for nonlinear analog circuits and MEMS. In: Proceedings of design automation conference, pp 490–495.

  195. Villena JF, Silveira LM (2011) Multi-dimensional automatic sampling schemes for multi-point modeling methodologies. IEEE Trans Comput-Aided Des Integr Circuits Syst 30(8):1141–1151

    Google Scholar 

  196. Willcox K, Peraire J (2002) Balanced model reduction via the proper orthogonal decomposition. AIAA J 40(11):2323–2330

    Google Scholar 

  197. Wittig T, Munteanu I, Schuhmann R, Weiland T (2002) Two-step Lanczos algorithm for model order reduction. IEEE Trans Magn 38:673–676

    Google Scholar 

  198. Wolf T, Panzer H, Lohmann B (2011) Gramian-based error bound in model reduction by Krylov subspace methods. In: Proceedings of IFAC World Congress, pp 3587–3591.

  199. Wolf T, Panzer H, Lohmann B (2012) ADI-Lösung großer Ljapunow-Gleichungen mittels Krylov-Methoden und neue Formulierung des Residuums (in German). In: Sawodny O, Adamy J (eds) Tagungsband GMA-FA 1.30, ’Modellbildung, Identifikation und Simulation in der Automatisierungstechnik’, pp 291–303.

  200. Wolf T, Panzer H, Lohmann B (2012) Sylvester equations and the factorization of the error system in Krylov subspace methods. In: Proceedings of the 7th Vienna conference on mathematical modelling (MATHMOD). Vienna, Austria.

  201. Wolf T, Panzer H, Lohmann B (2013) Model reduction by approximate balanced truncation: a unifying framework. at-Automatisierungstechnik 61(8):545–556.

  202. Yan B, Tan XD, Liu P, McGaughy B (2007) Passive interconnect macromodeling via balanced truncation of linear systems in descriptor form. In: Proceedings of design automation conference, pp 355–360.

  203. Yan B, Tan XD, Liu P, McGaughy B (2007) SBPOR: second-order balanced truncation for passive order reduction of RLC circuits. In: Proceedings of design automation conference, pp 158–161.

  204. Zhang L, Lam J (2002) On \({\cal H}_2\) model reduction of bilinear systems. Automatica 38(2):205–216

    MATH  MathSciNet  Google Scholar 

  205. Zhang Y, Liu H, Wang Q, Fong N, Wong N (2012) Fast nonlinear model order reduction via associated transforms of high-order Volterra transfer functions. In: Proceedings of design automation conference, pp 289–294.

  206. Zhou K, Salomon G, Wu E (1999) Balanced realization and model reduction for unstable systems. Int J Robust Nonlinear Control 9(3):183–198

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Tobias Breiten, Heiko Panzer and Thomas Wolf for reading a draft version of this manuscript and providing various suggestions for improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Baur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baur, U., Benner, P. & Feng, L. Model Order Reduction for Linear and Nonlinear Systems: A System-Theoretic Perspective. Arch Computat Methods Eng 21, 331–358 (2014). https://doi.org/10.1007/s11831-014-9111-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9111-2

Navigation