Skip to main content
Log in

Depth Averaged Models for Fast Landslide Propagation: Mathematical, Rheological and Numerical Aspects

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper presents an overview of depth averaged modelling of fast catastrophic landslides where coupling of solid skeleton and pore fluid (air and water) is important. The first goal is to show how Biot–Zienkiewicz models can be applied to develop depth integrated, coupled models. The second objective of the paper is to consider a link which can be established between rheological and constitutive models. Perzyna’s viscoplasticity can be considered a general framework within which rheological models such as Bingham and cohesive frictional fluids can be derived. Among the several alternative numerical models, we will focus here on SPH which has not been widely applied by engineers to model landslide propagation. We propose an improvement, based on combining Finite Difference meshes associated to SPH nodes to describe pore pressure evolution inside the landslide mass. We devote a Section to analyze the performance of the models, considering three sets of tests and examples which allows to assess the model performance and limitations: (i) Problems having an analytical solution, (ii) Small scale laboratory tests, and (iii) Real cases for which we have had access to reliable information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  1. Dikau R, Commission E (1996) Landslide recognition: identification, movement, and clauses. John Wiley & Sons Ltd,

  2. Sulem J, Vardoulakis IG (1995) Bifurcation Analysis in Geomechanics. Taylor & Francis,

  3. Laouafa F, Darve F (2002) Modelling of slope failure by a material instability mechanism. Comput. Geotech. 29:301–325

    Google Scholar 

  4. Fernandez Merodo JA, Pastor M, Mira P, Tonni L, Herreros MI, Gonzalez E, Tamagnini R (2004) Modelling of diffuse failure mechanisms of catastrophic landslides. Comput. Methods Appl. Mech. Eng. 193:2911–2939

    MATH  Google Scholar 

  5. Prisco C, Nova R, Matiotti R (1995) Theoretical investigation of the undrained stability of shallow submerged slopes. Géotechnique. 45:479–496

    Google Scholar 

  6. Bishop AW (1973) The stability of tips and spoil heaps. Q. J. Eng. Geol. Hydrogeol. 6:335–376

    Google Scholar 

  7. Calembert L, Dantinne R (1964) The avalanche of ash at Jupille (Liege) on February 3rd, 1961. The commemorative volume dedicated to Professeur F.Campus. pp. 41–57.

  8. Han G, Wang D (1996) Numerical Modeling of Anhui Debris Flow. J. Hydraul. Eng. 122:262–265

    Google Scholar 

  9. Dawson RF, Morgenstern NR, Stokes AW (1998) Liquefaction flowslides in Rocky Mountain coal mine waste dumps. Can. Geotech. J. 35:328–343

    Google Scholar 

  10. Okada Y, Sassa K, Fukuoka H (2004) Excess pore pressure and grain crushing of sands by means of undrained and naturally drained ring-shear tests. Eng. Geol. 75:325–343

    Google Scholar 

  11. Iverson RI (2000) Landslide triggering by rain infiltration. Water Resour. Res. 36:1897–1910

    Google Scholar 

  12. Pailha M, Nicolas M, Pouliquen O (2008) Initiation of underwater granular avalanches: Influence of the initial volume fraction. Phys. Fluids. 20:111701

    Google Scholar 

  13. Igwe O, Sassa K, Fukuoka H (2006) Excess pore water pressure: a major factor for catastrophic landslides. The 10th IAEG International Congress., Nottingham, UK

  14. Biot MA (1955) Theory of Elasticity and Consolidation for a Porous Anisotropic Solid. J. Appl. Phys. 26:182

    MATH  MathSciNet  Google Scholar 

  15. Biot MA (1941) General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 12:155

    MATH  Google Scholar 

  16. Zienkiewicz OC, Chang CT, Bettess P (1980) Drained, undrained, consolidating and dynamic behaviour assumptions in soils. Géotechnique. 30:385–395

    Google Scholar 

  17. Zienkiewicz OC, Shiomi T (1984) Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution. Int. J. Numer. Anal. Methods Geomech. 8:71–96

    MATH  Google Scholar 

  18. Zienkiewicz OC, Xie YM, Schrefler BA, Ledesma A, Bicanic N (1990) Static and Dynamic Behaviour of Soils: A Rational Approach to Quantitative Solutions. II. Semi-Saturated Problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 429:311–321

    MATH  Google Scholar 

  19. Zienkiewicz OC, Chan AHC, Pastor M, Paul DK, Shiomi T (1990) Static and Dynamic Behaviour of Soils: A Rational Approach to Quantitative Solutions. I. Fully Saturated Problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 429:285–309

    MATH  Google Scholar 

  20. Zienkiewicz OC, Chan AHC, Pastor M, Schrefler BA, Shiomi T (1999) Computational Geomechanics. John Wiley & Sons Ltd,

  21. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media.

  22. Coussy O (1995) Mechanics of Porous Continua.

  23. De Boer R (2000) Theory of Porous Media: Highlights in Historical Development and Current State.

  24. De Boer R (2005) Trends in Continuum Mechanics of Porous Media. Springer Verlang, Berlin

    MATH  Google Scholar 

  25. Anderson TB, Jackson R (1967) Fluid Mechanical Description of Fluidized Beds. Equations of Motion. Ind. Eng. Chem. Fundam. 6:527–539

    Google Scholar 

  26. Green AE, Adkins JE (1960) Large Elastic Deformations and Nonlinear Continuum Mechanics.

  27. Green AE, Naghdi PM (1969) On basic equations for mixtures. Q. J. Mech. Appl. Math. 22:427–438

    MATH  Google Scholar 

  28. Bowen RM (1976) Theory of Mixtures, Part I. In: Eringen AC (ed) Continuum physics III.

  29. Li X, Zienkiewicz OC, Xie YM (1990) A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution. Int. J. Numer. Methods Eng. 30:1195–1212

    MATH  Google Scholar 

  30. Schrefler BA (1995) F.E. in environmental engineering: Coupled thermo-hydro-mechanical processes in porous media including pollutant transport. Arch. Comput. Methods Eng. 2:1–54

    Google Scholar 

  31. De Boer R (1996) Highlights in the Historical Development of the Porous Media Theory: Toward a Consistent Macroscopic Theory. Appl. Mech. Rev. 49:201

    Google Scholar 

  32. Hutchinson JN (1986) A sliding-consolidation model for flow slides. Can. Geotech. J. 23:115–126

    Google Scholar 

  33. Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J. Geophys. Res. 106:537

    Google Scholar 

  34. Modelling tailings dams and mine waste dumps failures (2002) Pastor, M., Quecedo, M., Fernández Merodo, J.A., Herreros, M.I., Gonzalez, E., Mira, P. Géotechnique. 52:579–591

    Google Scholar 

  35. Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int. J. Numer. Anal. Methods Geomech. 33:143–172

    MATH  Google Scholar 

  36. Quecedo M, Pastor M, Herreros MI, Fernández Merodo JA (2004) Numerical modelling of the propagation of fast landslides using the finite element method. Int. J. Numer. Methods Eng. 59:755–794

    MATH  Google Scholar 

  37. Major JJ, Iverson RM (1999) Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins. Geol. Soc. Am. Bull. 111:1424–1434

    Google Scholar 

  38. Pitman EB, Le L (2005) A two-fluid model for avalanche and debris flows. Philos. Trans. A. Math. Phys. Eng. Sci. 363:1573–601

    MATH  MathSciNet  Google Scholar 

  39. Pudasaini SP, Hutter K (2007) Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches

  40. Gray JMNT, Thornton AR (2005) A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. A Math. Phys. Eng. Sci. 461:1447–1473

    MATH  MathSciNet  Google Scholar 

  41. Gray JMNT, Ancey C (2009) Segregation, recirculation and deposition of coarse particles near two-dimensional avalanche fronts. J. Fluid Mech. 629:387

    MATH  MathSciNet  Google Scholar 

  42. Gray JMNT, Ancey C (2011) Multi-component particle-size segregation in shallow granular avalanches. J. Fluid Mech. 678:535–588

    MATH  Google Scholar 

  43. Pastor M, Blanc T, Pastor MJ (2009) A depth-integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures: Application to fast catastrophic landslides. J. Nonnewton. Fluid Mech. 158:142–153

    MATH  Google Scholar 

  44. Saint-Venant A (1871) Theorie du mouvement non permanent des eaux, avec application aux crues des rivieres et a l’introduction de marees dans leurs lits. Comptes-Rendus l’Académie des Sci. 73:147–273

    MATH  Google Scholar 

  45. Savage SB, Hutter K (1991) The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis. Acta Mech. 86:201–223

    MATH  MathSciNet  Google Scholar 

  46. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199:177

    MATH  MathSciNet  Google Scholar 

  47. Hutter K, Koch T (1991) Motion of a Granular Avalanche in an Exponentially Curved Chute: Experiments and Theoretical Predictions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 334:93–138

    Google Scholar 

  48. Hutter K, Siegel M, Savage SB, Nohguchi Y (1993) Two-dimensional spreading of a granular avalanche down an inclined plane Part I. theory. Acta Mech. 100:37–68

    MATH  MathSciNet  Google Scholar 

  49. Gray JMNT, Wieland M, Hutter K (1999) Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. A Math. Phys. Eng. Sci. 455:1841–1874

    MATH  MathSciNet  Google Scholar 

  50. Laigle D, Coussot P (1997) Numerical Modeling of Mudflows. J. Hydraul. Eng. 123:617–623

    Google Scholar 

  51. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can. Geotech. J. 41:1084–1097

    Google Scholar 

  52. Wang Y, Hutter K (1999) A constitutive theory of fluid-saturated granular materials and its application in gravitational flows. Rheol. Acta. 38:214–223

    Google Scholar 

  53. Iverson RI (1997) The physics of debris flows. Rev. Geophys. 35:245–296

    Google Scholar 

  54. Bingham EC (1922) Fluidity and Plasticity. McGraw-Hill,

  55. Hohenemser K, Prager W (1932) Über die Ansätze der Mechanik isotroper Kontinua. ZAMM - Zeitschrift für Angew. Math. und Mech. 12:216–226

    Google Scholar 

  56. Oldroyd JG, Wilson AH (2008) A rational formulation of the equations of plastic flow for a Bingham solid. Math. Proc. Cambridge Philos. Soc. 43:100

    Google Scholar 

  57. Malvern LE (1969) Introduction to the Mechanics of a continuous medium. Prentice Hall,

  58. Coussot P (1994) Steady, laminar, flow of concentrated mud suspensions in open channel. J. Hydraul. Res. 32:535–559

    Google Scholar 

  59. Coussot P (1997) Mudflow Rheology and Dynamics. Balkema,

  60. Coussot P (2005) Rheometry of pastes, suspensions and granular matter. John Wiley and Sons Inc,

  61. Dent JD, Lang TE (1983) A biviscous modified bingham model of snow avalanche in motion. Ann. Glaciol. 4:42–46

    Google Scholar 

  62. Locat J (1997) Normalized rheological behaviour of fine muds and their flow properties in a pseudoplastic regime. International Conference on Debris-Flow Hazard Mitigation: Prediction and Assessment. pp. 260–269, New York.

  63. Chen C (1988) Generalized viscoplastic modeling of debris flow. J. Hydraul. Eng. 114:237–258

    Google Scholar 

  64. Chen C, Ling C-H (1996) Granular-Flow Rheology: Role of Shear-Rate Number in Transition Regime. J. Eng. Mech. 122:469–480

    Google Scholar 

  65. Parry RHG (1960) Triaxial Compression and Extension Tests on Remoulded Saturated Clay. Géotechnique. 10:166–180

    Google Scholar 

  66. Iverson RM (2005) Regulation of landslide motion by dilatancy and pore pressure feedback. J. Geophys. Res. 110:F02015

    Google Scholar 

  67. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature. 441:727–30

    Google Scholar 

  68. Forterre Y, Pouliquen O (2008) Flows of Dense Granular Media. Annu. Rev. Fluid Mech. 40:1–24

    MathSciNet  Google Scholar 

  69. Pailha M, Pouliquen O (2009) A two-phase flow description of the initiation of underwater granular avalanches. J. Fluid Mech. 633:115

    MATH  MathSciNet  Google Scholar 

  70. Crosta GB, Imposimato S, Roddeman D (2009) Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng. Geol. 109:135–145

    Google Scholar 

  71. Crosta GB, Frattini P, Fusi N (2007) Fragmentation in the Val Pola rock avalanche. Italian Alps. J. Geophys. Res. 112:F01006

    Google Scholar 

  72. Johnson CG, Kokelaar BP, Iverson RM, Logan M, LaHusen RG, Gray JMNT (2012) Grain-size segregation and levee formation in geophysical mass flows. J. Geophys. Res. 117:F01032

    Google Scholar 

  73. Astarita G, Marucci G (1974) Principles of non-newtonian fluid mechanics. McGraw-Hill,

  74. Bagnold RA (1954) Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid under Shear. Proc. R. Soc. A Math. Phys. Eng. Sci. 225:49–63

    Google Scholar 

  75. Midi GR (2004) On dense granular flows. Eur. Phys. J. E. Soft Matter. 14:341–65

    Google Scholar 

  76. George DL, Iverson RI (2011) A two phase debris flow model thatincludes coupled evolution of volume fractions, granular dilatancy and pore fluid pressure. Italian Journal of Engineering Geology and Environment. pp. 415–424.

  77. Frigaard IA, Nouar C (2005) On the usage of viscosity regularisation methods for visco-plastic fluid flow computation. J. Nonnewton. Fluid Mech. 127:1–26

    MATH  Google Scholar 

  78. Muravleva L, Muravleva E, Georgiou GC, Mitsoulis E (2010) Numerical simulations of cessation flows of a Bingham plastic with the augmented Lagrangian method. J. Nonnewton. Fluid Mech. 165:544–550

    MATH  Google Scholar 

  79. Pastor M, Quecedo M, Gonzalez E, Herreros MI, Fernández Merodo J, Mira P (2004) Modelling of landslides (II) Propagation. Degradations and Instabilities in Geomaterials. Springer Wien, New York

    Google Scholar 

  80. Fraccarollo L, Papa M (2000) Numerical simulation of real debris-flow events. Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos. 25:757–763

    Google Scholar 

  81. Naef D, Rickenmann D, Rutschmann P, McArdell BW (2006) Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat. Hazards Earth Syst. Sci. 6:155–165

    Google Scholar 

  82. Haddad B, Pastor M, Palacios D, Muñoz-Salinas E (2010) A SPH depth integrated model for Popocatépetl 2001 lahar (Mexico): Sensitivity analysis and runout simulation. Eng. Geol. 114:312–329

    Google Scholar 

  83. Cola S, Calabro N, Pastor M (2008) Prediction of the flow-like movements of Tessina landslide by SPH model. 10th International Symposium on landslides and engineered slopes. pp. 647–654.

  84. Malet J-P, Maquaire O, Locat J, Remaitre A (2004) Assessing debris flow hazards associated with slow moving landslides: methodology and numerical analyses. Landslides. 1:83–90

    Google Scholar 

  85. Sanchez ME, Pastor M, Romana MG (2013) Modelling of short runout propagation landslides and debris flows. Georisk Assess. Manag. Risk Eng. Syst. Geohazards. 1–17.

  86. Voellmy A (1955) Über die Zerstörungskraft von Lawinen.

  87. Hanes DM, Inman DL (2006) Observations of rapidly flowing granular-fluid materials. J. Fluid Mech. 150:357

    Google Scholar 

  88. Roux S, Radjai F (1998) Texture-Dependent Rigid-Plastic Behavior. 229–236.

  89. Perzyna P (1963) The constitutive equations for rate sensitive plastic materials. Q. Appl. Math. 20:321–332

    MATH  MathSciNet  Google Scholar 

  90. Perzyna P (1966) Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9:243–377

    Google Scholar 

  91. Burland JR (1965) The yielding and dilation of clay (Correspondence). Geotechnique. 15:211–214

    Google Scholar 

  92. Di Prisco C, Pisanò F (2011) An exercise on slope stability and perfect elastoplasticity. Géotechnique. 61:923–934

    Google Scholar 

  93. Di Prisco C, Pastor M, Pisanò F (2012) Shear wave propagation along infinite slopes: A theoretically based numerical study. Int. J. Numer. Anal. Methods Geomech. 36:619–642

    Google Scholar 

  94. Pisanò F, Pastor M (2011) 1D wave propagation in saturated viscous geomaterials: Improvement and validation of a fractional step Taylor-Galerkin finite element algorithm. Comput. Methods Appl. Mech. Eng. 200:3341–3357

    MATH  Google Scholar 

  95. Löhner R, Morgan K, Zienkiewicz OC (1984) The solution of non-linear hyperbolic equation systems by the finite element method. Int. J. Numer. Methods Fluids. 4:1043–1063

    MATH  Google Scholar 

  96. Donea J, Giuliani S, Laval H, Quartapelle L (1984) Time-accurate solution of advection-diffusion problems by finite elements. Comput. Methods Appl. Mech. Eng. 45:123–145

    MATH  MathSciNet  Google Scholar 

  97. Mabssout M, Pastor M (2003) A Taylor-Galerkin algorithm for shock wave propagation and strain localization failure of viscoplastic continua. Comput. Methods Appl. Mech. Eng. 192:955–971

    MATH  Google Scholar 

  98. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: Diffuse approximation and diffuse elements. Comput. Mech. 10:307–318

    MATH  Google Scholar 

  99. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37:229–256

    MATH  MathSciNet  Google Scholar 

  100. Duarte CA, Oden JT (1996) An h-p adaptive method using clouds. Comput. Methods Appl. Mech. Eng. 139:237–262

    MATH  MathSciNet  Google Scholar 

  101. Melenk JM, Babuška I (1996) The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Eng. 139:289–314

    MATH  Google Scholar 

  102. Oñate E, Idelsohn S (1998) A mesh-free finite point method for advective-diffusive transport and fluid flow problems. Comput. Mech. 21:283–292

    MATH  MathSciNet  Google Scholar 

  103. Oñate E, Idelsohn SR, Celigueta MA, Rossi R, Marti J, Carbonell JM, Ryzhakov P, Suárez B (2011) Advances in the Particle Finite Element Method (PFEM) for Solving Coupled Problems in Engineering. Particle-Based Methods. pp. 1–49

  104. Salazar F, Oñate E, Morán R (2011) Numerical modeling of landslides in reservoirs using the Particle Finite Element Method (PFEM). Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management,

  105. Więckowski Z (2004) The material point method in large strain engineering problems. Comput. Methods Appl. Mech. Eng. 193:4417–4438

    MATH  Google Scholar 

  106. Coetzee CJ, Vermeer PA, Basson AH (2005) The modelling of anchors using the material point method. Int. J. Numer. Anal. Methods Geomech. 29:879–895

    MATH  Google Scholar 

  107. Andersen S, Andersen L (2009) Modelling of landslides with the material-point method. Comput. Geosci. 14:137–147

    Google Scholar 

  108. Alonso EE, Zabala F (2011) Progressive failure of Aznalcóllar dam using the material point method. Géotechnique. 61:795–808

    Google Scholar 

  109. Jassim I, Stolle D, Vermeer P (2013) Two-phase dynamic analysis by material point method. Int. J. Numer. Anal. Methods Geomech. 37:2502–2522

    Google Scholar 

  110. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron. J. 82:1013

    Google Scholar 

  111. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon Not R Astron Soc 375–389

  112. Monaghan JJ, Lattanzio JC (1985) A Refined Particle Method for Astrophysical Problems. Astron. Astrophys. 149:135–143

    MATH  Google Scholar 

  113. Benz W (1990) Smooth Particle Hydrodynamics - a Review. Proceedings of the NATO Advanced Research Workshop on The Numerical Modelling of Nonlinear Stellar Pulsations Problems and Prospects. p. 269

  114. Monaghan JJ (1992) Smoothed Particle Hydrodynamics. Annu. Rev. Astron. Astrophys. 30:543–574

    Google Scholar 

  115. Liu G-R, Liu MB (2003) Smoothed Particle Hydrodynamics: A Meshfree Particle Method

  116. Li S, Liu WK (2004) Meshfree particle method.

  117. Liu MB, Liu GR (2006) Restoring particle consistency in smo- othed particle hydrodynamics. Appl. Numer. Math. 56:19–36

  118. Monaghan JJ, Kos A (1999) Solitary Waves on a Cretan Beach. J. Waterw. Port, Coastal. Ocean Eng. 125:145–155

    Google Scholar 

  119. Monaghan JJ, Kos A, Issa N (2003) Fluid Motion Generated by Impact. J. Waterw. Port, Coastal. Ocean Eng. 129:250–259

    Google Scholar 

  120. Takeda H, Miyama SM, Sekiya M (1994) Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics. Prog. Theor. Phys. 92:939–960

    Google Scholar 

  121. Monaghan JJ (1994) Simulating Free Surface Flows with SPH. J. Comput. Phys. 110:399–406

    MATH  Google Scholar 

  122. Monaghan JJ, Kocharyan A (1995) SPH simulation of multi-phase flow. Comput. Phys. Commun. 87:225–235

    MATH  Google Scholar 

  123. Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid-structure interaction by SPH. Comput. Struct. 85:879–890

    Google Scholar 

  124. Vila JP (1999) On particle weighted methods and smooth particle hydrodynamics. Math. Model. Methods Appl. Sci. 09:161–209

    MathSciNet  Google Scholar 

  125. Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int. J. Numer. Methods Eng. 47:1189–1214

    MATH  Google Scholar 

  126. Zhu Y, Fox PJ (2001) Smoothed Particle Hydrodynamics Model for Diffusion through Porous Media. Transp. Porous Media. 43:441–471

    Google Scholar 

  127. Ata R, Soulaïmani A (2005) A stabilized SPH method for inviscid shallow water flows. Int. J. Numer. Methods Fluids. 47:139–159

    MATH  Google Scholar 

  128. De Leffe M, Le Touze D, Alessandrini B (2008) Coastal flow simulations using an sph formulation modelling the non-linear shallow water equations. 3RD ERCOFTAC SPHERIC workshop on SPH applications. pp. 48–54, Lausanne.

  129. Vacondio R, Rogers BD, Stansby PK, Mignosa P, Feldman J (2013) Variable resolution for SPH: A dynamic particle coalescing and splitting scheme. Comput. Methods Appl. Mech. Eng. 256:132–148

    MathSciNet  Google Scholar 

  130. Vacondio R, Mignosa P, Pagani S (2013) 3D SPH numerical simulation of the wave generated by the Vajont rockslide. Adv. Water Resour. 59:146–156

    Google Scholar 

  131. Vacondio R, Rogers BD, Stansby PK, Mignosa P (2013) Shallow water SPH for flooding with dynamic particle coalescing and splitting. Adv. Water Resour. 58:10–23

    Google Scholar 

  132. Xia X, Liang Q, Pastor M, Zou W, Zhuang Y-F (2013) Balancing the source terms in a SPH model for solving the shallow water equations. Adv. Water Resour. 59:25–38

    Google Scholar 

  133. Rodriguez-Paz M, Bonet J (2005) A corrected smooth particle hydrodynamics formulation of the shallow-water equations. Comput. Struct. 83:1396–1410

    MathSciNet  Google Scholar 

  134. Libersky LD, Petschek AG (1991) Smooth particle hydrodynamics with strength of materials. Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method. pp. 248–257

  135. Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High Strain Lagrangian Hydrodynamics. J. Comput. Phys. 109:67–75

    MATH  Google Scholar 

  136. Randles PW, Libersky LD (2000) Normalized SPH with stress points. Int. J. Numer. Methods Eng. 48:1445–1462

    MATH  Google Scholar 

  137. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput. Methods Appl. Mech. Eng. 190:6641–6662

    MATH  Google Scholar 

  138. Bui HH, Sako K, Fukagawa R (2007) Numerical simulation of soil-water interaction using smoothed particle hydrodynamics (SPH) method. J. Terramechanics. 44:339–346

    Google Scholar 

  139. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int. J. Numer. Anal. Methods Geomech. 32:1537–1570

    MATH  Google Scholar 

  140. Blanc T, Pastor M (2012) A stabilized Fractional Step, Runge-Kutta Taylor SPH algorithm for coupled problems in geomechanics. Comput. Methods Appl. Mech. Eng. 221–222:41–53

    MathSciNet  Google Scholar 

  141. Blanc T, Pastor M (2012) A stabilized Runge-Kutta, Taylor smoothed particle hydrodynamics algorithm for large deformation problems in dynamics. Int. J. Numer. Methods Eng. 91:1427–1458

    MathSciNet  Google Scholar 

  142. Lastiwka M, Quinlan N, Basa M (2005) Adaptive particle distribution for smoothed particle hydrodynamics. Int. J. Numer. Methods Fluids. 47:1403–1409

    MATH  MathSciNet  Google Scholar 

  143. Feldman J, Bonet J (2007) Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int. J. Numer. Methods Eng. 72:295–324

    MATH  MathSciNet  Google Scholar 

  144. Monaghan J, Gingold R (1983) Shock simulation by the particle method SPH. J. Comput. Phys. 52:374–389

    MATH  Google Scholar 

  145. Morris JP (1996) Analysis of smoothed particle hydrodynamics with applications. Monash University, Australia

  146. Chen JK, Beraun JE, Carney TC (1999) A corrective smoothed particle method for boundary value problems in heat conduction. Int. J. Numer. Methods Eng. 46:231–252

    MATH  Google Scholar 

  147. Swegle JW, Hicks DL, Attaway SW (1995) Smoothed Particle Hydrodynamics Stability Analysis. J. Comput. Phys. 116:123–134

    MATH  MathSciNet  Google Scholar 

  148. Monaghan JJ (2000) SPH without a Tensile Instability. J. Comput. Phys. 159:290–311

    MATH  Google Scholar 

  149. Dyka CT, Randles PW, Ingel RP (1997) Stress points for tension instability in SPH. Int. J. Numer. Methods Eng. 40:2325–2341

    MATH  Google Scholar 

  150. Dyka CT, Ingel RP (1995) An approach for tension instability in smoothed particle hydrodynamics (SPH). Comput. Struct. 57:573–580

    MATH  Google Scholar 

  151. Randles PW, Libersky LD (1996) Smoothed Particle Hydrodynamics: Some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 139:375–408

    MATH  MathSciNet  Google Scholar 

  152. Blanc T, Pastor M (2013) A stabilized Smoothed Particle Hydrodynamics, Taylor-Galerkin algorithm for soil dynamics problems. Int. J. Numer. Anal. Methods Geomech. 37:1–30

    Google Scholar 

  153. Peraire J, Zienkiewicz OC, Morgan K (1986) Shallow water problems: A general explicit formulation. Int. J. Numer. Methods Eng. 22:547–574

    MATH  MathSciNet  Google Scholar 

  154. Monaghan JJ (1982) Why Particle Methods Work. SIAM J. Sci. Stat. Comput. 3:422–433

    MATH  MathSciNet  Google Scholar 

  155. Bonet J, Kulasegaram S, Rodriguez-Paz MX, Profit M (2004) Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems. Comput. Methods Appl. Mech. Eng. 193:1245–1256

    MATH  Google Scholar 

  156. Vacondio R, Rogers BD, Stansby PK, Mignosa P (2012) SPH Modeling of Shallow Flow with Open Boundaries for Practical Flood Simulation. J. Hydraul. Eng. 138:530–541

    Google Scholar 

  157. Monaghan JJ (1985) Particle methods for hydrodynamics. Comput. Phys. Reports. 3:71–124

    Google Scholar 

  158. Pastor M, Quecedo M, González E, Herreros MI, Merodo JAF, Mira P (2004) Simple Approximation to Bottom Friction for Bingham Fluid Depth Integrated Models. J. Hydraul. Eng. 130:149–155

    Google Scholar 

  159. Manzella I (2008) Dry rock avalanche propagation: unconstrained flow experiments with granular materials and blocks at small scale.

  160. Sossio R, Crosta G (2007) Thurwieser Rock avalanche.

  161. King JP (2001) The 2000 Tsing Shan Debris Flow.

  162. Bishop AW, Hutchinson JN, Penman ADM, Evans HE (1969) Geotechnical investigations into the causes and circumstances of the disaster of 21st October 1966. In Aselection of technical reports submitted ot the Aberfan Tribunal.

  163. Jeyapalan JK, Duncan JM, Seed HB (1983) Investigation of Flow Failures of Tailings Dams. J. Geotech. Eng. 109:172–189

    Google Scholar 

  164. Jin M, Fread DL. A.S. of C.E. (1997) One-Dimensional Routing of Mud/Debris Flows Using NWS FLDWAV Mode. Debris-flow hazards mitigation: mechanics, prediction, and assessment. pp. 687–696.

Download references

Acknowledgments

The authors gratefully acknowledge the economic support provided by the Spanish Ministry MINECO (Projects GEODYN and GEOFLOW). The first author would like to express his gratitude to Dra. Ma. D. Elizalde for the help provided with the documentation at the National Archives (Kew, UK), which allowed the retrieval of information concerning Aberfan flowslide. The authors gratefully acknowledge the support of the Geotechnical Engineering Office, Civil Engineering and Development Department of the Government of the Hong Kong SAR in the provision of the digital terrain models for the Hong Kong landslide cases. Thanks are given to Dr Manzella for the experimental data concerning the granular avalanche experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pastor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastor, M., Blanc, T., Haddad, B. et al. Depth Averaged Models for Fast Landslide Propagation: Mathematical, Rheological and Numerical Aspects. Arch Computat Methods Eng 22, 67–104 (2015). https://doi.org/10.1007/s11831-014-9110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9110-3

Navigation