Skip to main content
Log in

Recent Advances in Parallel Advancing Front Grid Generation

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The quest for scalable, parallel advancing front grid generation techniques now spans more than two decades. A recent innovation has been the use of a so-called domain-defining grid, which has led to a dramatic increase in robustness and speed. The domain-defining grid (DDG) has the same fine surface triangulation as the final mesh desired, but a much coarser interior mesh. The DDG renders the domain to be gridded uniquely defined and allows for a well balanced work distribution among the processors during all stages of grid generation and improvement. In this way, most of the shortcomings of previous techniques are overcome. Timings show that the approach is scalable and able to produce large grids of high quality in a modest amount of clocktime. These recent advances in parallel grid generation have enabled a completely scalable simulation pipeline (grid generation, solvers, post-processing), opening the way for truly large-scale computations using unstructured, body-fitted grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alleaume A, Francez L, Loriot M, Maman, N (2007) Large outofCore tetrahedral meshing. In: Proceedings of the 16th international meshing roundtable, Sandia National Laboratory, Oct. 15–17

  2. Andrae H, Ivanov E, Gluchshenko O, Kudryavtsev A (2008) Automatic parallel generation of tetrahedral grids by using a domain decomposition approach. J Comput Math Math Phys 48(8):1448–1457

    Google Scholar 

  3. Baker TJ (1989) Developments and trends in three-dimensional mesh generation. Appl Numer Math 5:275–304

    Article  MATH  MathSciNet  Google Scholar 

  4. Baum JD, Luo H, Löhner R (1993) Numerical simulation of a blast inside a Boeing 747; AIAA-93-3091

  5. Baum JD, Luo H, Löhner R (1995) Numerical simulation of blast in the World Trade Center; AIAA-95-0085

  6. Baum JD, Luo H, Löhner R, Yang C, Pelessone D, Charman C (1996) A coupled fluid/structure modeling of shock interaction with a truck; AIAA-96-0795

  7. Baum JD, Luo H, Löhner R (1998) The numerical simulation of strongly unsteady flows with hundreds of moving bodies; AIAA-98-0788

  8. Baum JD, Luo H, Mestreau E, Löhner R, Pelessone D, Charman C (1999) A coupled CFD/CSD methodology for modeling weapon detonation and fragmentation; AIAA-99-0794

  9. Blelloch GE, Hardwick JC, Miller GL, Talmor D (1999) Design and implementation of a practical parallel Delaunay algorithm. Algorithmica 24:243–269

    Article  MATH  MathSciNet  Google Scholar 

  10. Chew LP, Chrisochoides N, Sukup F (1997) Parallel constrained Delaunay meshing; In: Proceedings 1997 workshop on trends in unstructured mesh generation, June

  11. Chrisochoides N, Nave D (1999) Simultaneous mesh generation and partitioning for Delaunay meshes; In: Proceedings 8th international meshing roundtable, South Lake Tahoe, October pp. 55–66

  12. Chrisochoides N, Nave D (2003) Parallel Delaunay mesh generation kernel. Int J Numer Methods Eng 58:161–176

    Article  MATH  Google Scholar 

  13. Chrisochoides N (2005) Parallel mesh generation. In: Bruaset AM, Tveito A (eds) Numerical solution of partial differential equations on parallel computers. Springer, Norfolk

    Google Scholar 

  14. de Cougny HL, Shephard MS, Ozturan C (1994) Parallel three-dimensional mesh generation. Comput Syst Eng 5:311–323

    Article  Google Scholar 

  15. de Cougny HL, Shephard MS, Ozturan C (1995) Parallel three-dimensional mesh generation on distributed memory MIMD computers. Tech. Rep. SCOREC Rep. # 7, Rensselaer Polytechnic Institute

  16. de Cougny H, Shephard M (1999) Parallel volume meshing using face removals and hierarchical repartitioning. Comput Methods Appl Mech Eng 174(3–4):275–298

    Article  MATH  Google Scholar 

  17. Darve E, Löhner R (1997) Advanced structured–unstructured solver for electromagnetic scattering from multimaterial objects. AIAA-97-0863

  18. Freitag LA, Gooch C-Ollivier (1997) Tetrahedral mesh improvement using swapping and smoothing. Int J Numer Methods Eng 40:3979–4002

    Article  MATH  Google Scholar 

  19. Frykestig J (1994) Advancing front mesh generation techniques with application to the finite element method; Pub. 94:10, Chalmers University of Technology; Göteborg, Sweden

  20. Galtier J, George PL (1997) Prepartitioning as a way to mesh subdomains in parallel; In: Special Symposium on trends in unstructured mesh generation pp 107–122, ASME/ASCE/SES

  21. George PL, Hecht F, Saltel E (1991) Automatic mesh generator with specified boundary. Comp Methods Appl Mech Eng 92:269–288

    Article  MATH  MathSciNet  Google Scholar 

  22. George PL (1999) Tet meshing: construction, optimization and adaptation. In: Proceedings of the 8th international meshing roundtable, South Lake Tahoe, October

  23. von Hanxleden R, Scott LR (1991) Load balancing on message passing architectures. J Parallel Distrib Comput 13:312–324

    Article  Google Scholar 

  24. Hassan O, Bayne LB, Morgan K and Weatherill N P (1998) An adaptive unstructured mesh method for transient flows involving moving boundaries; pp. 662–674 in Computational fluid dynamics ’98 ( Papailiou KD, Tsahalis D, Périaux J and Knörzer D eds. ) Wiley

  25. Ito Y, Shih AM, Erukala AK, Soni BK, Chernikov A, Chrisochoides N, Nakahashi K (2007) Parallel unstructured mesh generation by an advancing front method. J Math Comput Simul 75(5–6):200–209

    Article  MATH  MathSciNet  Google Scholar 

  26. Ivanov EG, Andrae H, Kudryavtsev AN (2006) Domain decomposition approach for automatic parallel generation of tetrahedral grids. Int Math J Comput Methods Appl Math 6(2):178–193

    MATH  Google Scholar 

  27. Jin H, Tanner RI (1993) Generation of unstructured tetrahedral meshes by the advancing front technique. Int J Numer Methods Eng 36:1805–1823

    Article  MATH  Google Scholar 

  28. Jou W (1998) Comments on the feasibility of LES for commercial airplane wings. AIAA-98-2801

  29. Kadow C, Walkington N (2003) Design of a projection-based parallel Delaunay mesh generation and refinement algorithm. In: Proceedings of the fourth symposium on trends in unstructured mesh generation

  30. Kamoulakos A, Chen V, Mestreau E, Löhner R (1996) Finite element modelling of fluid/ structure interaction in explosively loaded aircraft fuselage panels using PAMSHOCK/ PAMFLOW coupling. Conference on spacecraft structures, materials and mechanical testing, Noordwijk, The Netherlands, March

  31. Karypis G, Kumar V (1998) A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. J Parallel Distrib Comput 48:71–85

    Article  Google Scholar 

  32. Karypis G, Kumar V (1999) Parallel multilevel k-way partitioning scheme for irregular graphs. SIAM Rev 41(2):278–300

    Article  MATH  MathSciNet  Google Scholar 

  33. Larwood BG, Weatherill NP, Hassan O, Morgan K (2003) Domain decomposition approach for parallel unstructured mesh generation. Int J Numer Methods Eng 58(2):177–188

    Article  MATH  Google Scholar 

  34. Liu J, Kailasanath K, Ramamurti R, Munday D, Gutmark E, Löhner R (2009) Large-Eddy simulations of a supersonic jet and its near-field acoustic properties. AIAA J 47(8):1849–1864

    Article  Google Scholar 

  35. Löhner R (1988) Some useful data structures for the generation of unstructured grids. Comm Appl Numer Methods 4: 123–135

    Google Scholar 

  36. Löhner R, Parikh P (1988) Three-dimensional grid generation by the advancing front method. Int J Numer Methods Fluids 8:1135–1149

    Article  MATH  Google Scholar 

  37. Löhner R (1990) Three-dimensional fluid-structure interaction using a finite element solver and adaptive remeshing. Comput Syst Eng 1(2–4):257–272

    Article  Google Scholar 

  38. Löhner R, Camberos J, Merriam M (1992) Parallel unstructured grid generation. Comput Methods Appl Mech Eng 95:343–357

    Article  MATH  Google Scholar 

  39. Löhner R, Ramamurti R (1995) A load balancing algorithm for unstructured grids. Comput Fluid Dyn 5:39–58

    Article  Google Scholar 

  40. Löhner R (1996) Extensions and improvements of the advancing front grid generation technique. Comm Numer Methods Eng 12:683–702

    Article  MATH  Google Scholar 

  41. Löhner R (1996) Regridding surface triangulations. J Comput Phys 126:1–10

    Article  MATH  Google Scholar 

  42. Löhner R (1996) Progress in grid generation via the advancing front technique. Eng Comput 12:186–210

    Article  Google Scholar 

  43. Löhner R, Yang C, Cebral J, Baum JD, Luo H, Pelessone D, Charman C (1998) Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids; AIAA-98-2419

  44. Löhner R (1998) Renumbering strategies for unstructured-grid solvers operating on shared- memory, cache-based parallel machines. Comput Methods Appl Mech Eng 163:95–109

    Article  MATH  Google Scholar 

  45. Löhner R, Yang C and Oñate E ( 1998) Viscous free surface hydrodynamics using unstructured grids; In: Proceedings 22nd symposium naval hydrodynamics, Washington DC, August

  46. Löhner R (2001) A parallel advancing front grid generation scheme. Int J Numer Methods Eng 51:663–678

    Article  MATH  Google Scholar 

  47. Löhner R (2008) Applied CFD techniques, 2nd edn. Wiley, Chichester

    Google Scholar 

  48. Löhner R, Cebral JR, Camelli FF, Appanaboyina S, Baum JD, Mestreau EL, Soto O (2008) Adaptive embedded and immersed unstructured grid techniques. Comput Methods Appl Mech Eng 197:2173–2197

    Article  MATH  Google Scholar 

  49. Marcum DL, Weatherill NP (1995) Unstructured grid generation using iterative point insertion and local reconnection. AIAA J 33(9):1619–1625

    Article  MATH  Google Scholar 

  50. Mavriplis DJ and Pirzadeh S (1999) Large-scale parallel unstructured mesh computations for 3-D high-lift analysis; ICASE Rep. 99–9

  51. Mestreau E, Löhner R and Aita S (1993) TGV tunnel-entry simulations using a finite element code with automatic remeshing; AIAA-93-0890

  52. Mestreau E and Löhner R (1996) Airbag simulation using fluid/structure coupling; AIAA-96-0798

  53. Morgan K, Brookes PJ, Hassan O and Weatherill NP (1997) Parallel processing for the simulation of problems involving scattering of electro-magnetic waves; In: Proceedings Symposium advances in computational mechanics (Demkowicz L and Reddy JN eds)

  54. Okusanya T, Peraire J (1996) Parallel unstructured mesh generation. In: Proceedings 5th international conference numerical grid generation in CFD and related fields, Mississippi, April

  55. Okusanya T, Peraire J (1997) 3-D Parallel unstructured mesh generation. In: Proceedings of the joint ASME/ASCE/SES summer meeting

  56. Peraire J, Vahdati M, Morgan K, Zienkiewicz OC (1987) Adaptive remeshing for compressible flow computations. J Comput Phys 72:449–466

    Article  MATH  Google Scholar 

  57. Peraire J, Peiro J, Formaggia L, Morgan K, Zienkiewicz OC (1988) Finite element euler calculations in three dimensions. Int J Numer Methods Eng 26:2135–2159

    Article  MATH  Google Scholar 

  58. Peraire J, Morgan K, Peiro J (1990) Unstructured finite element mesh generation and adaptive procedures for CFD; AGARD-CP-464, 18

  59. Peraire J, Morgan K, Peiro J (1992) Adaptive Remeshing in 3-D. J Comput Phys 103:269–285

    Article  MATH  Google Scholar 

  60. Pirzadeh SZ, Zagaris G (2008) Domain decomposition by the advancing-partition method for parallel unstructured grid generation. NASA/TM-2008-215350, L-19508

  61. Said R, Weatherill NP, Morgan K, Verhoeven NA (1999) Distributed parallel Delaunay mesh generation. Comput Methods Appl Mech 177:109–125

    Google Scholar 

  62. Shostko A, Löhner R (1995) Three-dimensional parallel unstructured grid generation. Int J Numer Methods Eng 38:905–925

    Article  MATH  Google Scholar 

  63. Tilch R, Tabbal A, Zhu M, Decker F, Löhner R (2008) Combination of body-fitted and embedded grids for external vehicle aerodynamics. Eng Comput 25(1):28–41

    Article  MATH  Google Scholar 

  64. Tremel U, Sorensen KA, Hitzel S, Rieger H, Hassan O, Weatherill NP (2006) Parallel remeshing of unstructured volume grids for CFD applications. Int J Numer Methods Fluids 53(8):1361–1379

    Article  MathSciNet  Google Scholar 

  65. Vidwans A, Kallinderis Y and Venkatakrishnan V (1993) A parallel load balancing algorithm for 3-D adaptive unstructured grids; AIAA-93-3313-CP

  66. Williams D (1990) Performance of dynamic load balancing algorithms for unstructured grid calculations. CalTech Report C3P913

  67. Weatherill NP (1992) Delaunay triangulation in computational fluid dynamics. Comput Math Appl 24(5/6):129–150

    Article  MATH  Google Scholar 

  68. Weatherill NP, Hassan O (1994) Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. Int J Numer Methods Eng 37:2005–2039

    Article  MATH  Google Scholar 

  69. Yoshimura S, Nitta H, Yagawa G, Akiba H (1998) Parallel automatic mesh generation method of ten-million nodes problem using fuzzy knowledge processing and computational geometry. In: Proceedings of the 4th World CongComp. Mech. Buenos Aires, Argentina, July

Download references

Acknowledgments

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725, and also resources of the DoD High Performance Computing Modernization Program. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainald Löhner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löhner, R. Recent Advances in Parallel Advancing Front Grid Generation. Arch Computat Methods Eng 21, 127–140 (2014). https://doi.org/10.1007/s11831-014-9098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9098-8

Keywords

Navigation