Skip to main content
Log in

From Single-Scale to Two-Scales Kinetic Theory Descriptions of Rods Suspensions

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a first attempt to define a two-scales kinetic theory description of suspensions involving short fibers, nano-fibers or nanotubes. We start revisiting the description of dilute enough suspensions for which microscopic, mesoscopic and macroscopic descriptions are available and all them have been successfully applied for describing the rheology of such suspensions. When the suspensions become too concentrated fiber-fiber interactions cannot be neglected and then classical dilute theories fail for describing the rich microstructure evolution. In the semi-concentrated regime some interaction mechanisms that mimetic the randomizing effect of fiber-fiber interactions were successfully introduced. Finally, when the concentration becomes high enough, richer microstructures can be observed. They involve a diversity of fiber clusters or aggregates with complex kinematics, and different sizes and shapes. These clusters can interact to create larger clusters and also break because the flow induced hydrodynamic forces. In this paper we propose a double-scale kinetic theory model that at the first scale consider the kinematics of the clusters, whose structure itself is described at the finest scale, the one related to the rods constituting the clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Achdou Y, Pironneau O (2005) Computational methods for option pricing. Frontiers in applied mathematics. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  2. Advani S, Tucker Ch (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31:751–784

    Article  Google Scholar 

  3. Advani S, Tucker Ch (1990) Closure approximations for three-dimensional structure tensors. J Rheol 34:367–386

    Article  Google Scholar 

  4. Advani S (ed) (1994) Flow and rheology in polymer composites manufacturing. Elsevier, Amsterdam

    Google Scholar 

  5. Ammar A, Chinesta F (2005) A particle strategy for solving the Fokker-Planck equation governing the fibre orientation distribution in steady recirculating flows involving short fibre suspensions. In: Lectures notes on computational science and engineering, vol 43. Springer, Berlin, pp 1–16

    Google Scholar 

  6. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newton Fluid Mech 139:153–176

    Article  MATH  Google Scholar 

  7. Ammar A, Ryckelynck D, Chinesta F, Keunings R (2006) On the reduction of kinetic theory models related to finitely extensible dumbbells. J Non-Newton Fluid Mech 134:136–147

    Article  MATH  Google Scholar 

  8. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144:98–121

    Article  MATH  Google Scholar 

  9. Ammar A, Chinesta F, Joyot P (2008) The nanometric and micrometric scales of the structure and mechanics of materials revisited: an introduction to the challenges of fully deterministic numerical descriptions. Int J Multiscale Comput Eng 6(3):191–213

    Article  Google Scholar 

  10. Ammar A, Pruliere E, Chinesta F, Laso M (2009) Reduced numerical modeling of flows involving liquid-crystalline polymeres. J Non-Newton Fluid Mech 160:140–156

    Article  Google Scholar 

  11. Ammar A, Normandin M, Daim F, Gonzalez D, Cueto E, Chinesta F (2010) Non-incremental strategies based on separated representations: applications in computational rheology. Commun Math Sci 8(3):671–695

    MathSciNet  MATH  Google Scholar 

  12. Ammar A, Normandin M, Chinesta F (2010) Solving parametric complex fluids models in rheometric flows. J Non-Newton Fluid Mech 165:1588–1601

    Article  Google Scholar 

  13. Batchelor GK (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41:545–570

    Article  MathSciNet  MATH  Google Scholar 

  14. Bellomo N (2008) Modeling complex living systems. Birkhäuser, Basel

    MATH  Google Scholar 

  15. Bird RB, Crutiss CF, Armstrong RC, Hassager O (1987) Dynamic of polymeric liquid. Volume 2: Kinetic theory. Wiley, New York

    Google Scholar 

  16. Bungartz HJ, Griebel M (2004) Sparse grids. Acta Numer 13:1–123

    Article  MathSciNet  Google Scholar 

  17. Cancès E, Defranceschi M, Kutzelnigg W, Le Bris C, Maday Y (2003) Computational quantum chemistry: a primer, handbook of numerical analysis, vol X. Elsevier, Amsterdam, pp 3–270

    Google Scholar 

  18. Chaubal C, Srinivasan A, Egecioglu O, Leal G (1997) Smoothed particle hydrodynamics techniques for the solution of kinetic theory problems. J Non-Newton Fluid Mech 70:125–154

    Article  Google Scholar 

  19. Chinesta F, Chaidron G, Poitou A (2003) On the solution of the Fokker-Planck equation in steady recirculating flows involving short fibre suspensions. J Non-Newton Fluid Mech 113:97–125

    Article  MATH  Google Scholar 

  20. Chinesta F, Ammar A, Falco A, Laso M (2007) On the reduction of stochastic kinetic theory models of complex fluids. Model Simul Mater Sci Eng 15:639–652

    Article  Google Scholar 

  21. Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350

    Article  MathSciNet  Google Scholar 

  22. Chinesta F, Ammar A, Cueto E (2010) On the use of proper generalized decompositions for solving the multidimensional chemical master equation. Eur J Comput Mech 19:53–64

    Google Scholar 

  23. Chinesta F, Ammar A, Leygue A, Keunings R (2011) An overview of the proper generalized decomposition with applications in computational rheology. J Non-Newton Fluid Mech 166:578–592

    Article  MATH  Google Scholar 

  24. Cruz C, Illoul L, Chinesta F, Regnier G (2010) Effects of a bent structure on the linear viscoelastic response of carbon nanotube diluted suspensions. Rheol Acta 49:1141–1155

    Article  Google Scholar 

  25. Cruz C, Chinesta F, Regnier G (2012) Review on the Brownian dynamics simulation of bead-rod-spring models encountered in computational rheology. Arch Comput Methods Eng 19(2):227–259

    Article  MathSciNet  Google Scholar 

  26. Cueto E, Monge R, Chinesta F, Poitou A, Alfaro I, Mackley M (2010) Rheological modeling and forming process simulation of CNT nanocomposites. Int J Mater Form 3(2):1327–1338

    Article  Google Scholar 

  27. Doi M, Edwards SF (1987) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  28. Dumont P, Le Corre S, Orgeas L, Favier D (2009) A numerical analysis of the evolution of bundle orientation in concentrated fibre-bundle suspensions. J Non-Newton Fluid Mech 160:76–92

    Article  Google Scholar 

  29. Dupret F, Verleye V (1999) Modelling the flow of fibre suspensions in narrow gaps. In: Siginer DA, De Kee D, Chabra RP (eds) Advances in the flow and rheology of non-Newtonian fluids. Rheology series. Elsevier, Amsterdam, pp 1347–1398

    Chapter  Google Scholar 

  30. Ferec J, Ausias G, Heuzey MC, Carreau P (2009) Modeling fiber interactions in semiconcentrated fiber suspensions. J Rheol 53(1):49–72

    Article  Google Scholar 

  31. Folgar F, Tucker Ch (1984) Orientation behavior of fibers in concentrated suspensions. J Reinf Plast Compos 3:98–119

    Article  Google Scholar 

  32. Grassia P, Hinch J, Nitsche LC (1995) Computer simulations of Brownian motion of complex systems. J Fluid Mech 282:373–403

    Article  MathSciNet  MATH  Google Scholar 

  33. Grassia P, Hinch J (1996) Computer simulations of polymer chain relaxation via Brownian motion. J Fluid Mech 308:255–288

    Article  MATH  Google Scholar 

  34. Hand GL (1962) A theory of anisotropic fluids. J Fluid Mech 13:33–62

    Article  MathSciNet  MATH  Google Scholar 

  35. Hinch J, Leal G (1972) The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J Fluid Mech 52:683–712

    Article  MATH  Google Scholar 

  36. Hinch J, Leal G (1975) Constitutive equations in suspension mechanics. Part I. J Fluid Mech 71:481–495

    Article  MATH  Google Scholar 

  37. Hinch J, Leal G (1976) Constitutive equations in suspension mechanics. Part II. J Fluid Mech 76:187–208

    Article  MATH  Google Scholar 

  38. Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond Ser A, Math Phys Sci 102:161–179

    Article  Google Scholar 

  39. Keunings R (2004) Micro-macro methods for the multiscale simulation viscoelastic flow using molecular models of kinetic theory. In: Binding DM, Walters K (eds) Rheology reviews. British Society of Rheology, Aberystwyth, pp 67–98

    Google Scholar 

  40. Kroger M, Ammar A, Chinesta F (2008) Consistent closure schemes for statistical models of anisotropic fluids. J Non-Newton Fluid Mech 149:40–55

    Article  Google Scholar 

  41. Lamari H, Ammar A, Leygue A, Chinesta F (2012) On the solution of the multidimensional Langer’s equation by using the proper generalized decomposition method for modeling phase transitions. Model Simul Mater Sci Eng 20:015007

    Article  Google Scholar 

  42. Laughlin RB (2000) The theory of everything. In Proceeding of the USA National Academy of Sciences.

    Google Scholar 

  43. Le Bris C (ed) (2003) Handbook of numerical analysis. Vol. X: Computational chemistry. Elsevier, Amsterdam

    Google Scholar 

  44. Leonenko GM, Phillips TN (2009) On the solution of the Fokker-Planck equation using a high-order reduced basis approximation. Comput Methods Appl Mech Eng 199(1–4):158–168

    Article  MathSciNet  MATH  Google Scholar 

  45. Ma A, Chinesta F, Mackley M, Ammar A (2008) The rheological modelling of carbon nanotube (CNT) suspensions in steady shear flows. Int J Mater Form 2:83–88

    Article  Google Scholar 

  46. Ma A, Chinesta F, Ammar A, Mackley M (2008) Rheological modelling of carbon nanotube aggregate suspensions. J Rheol 52(6):1311–1330

    Google Scholar 

  47. Ma A, Chinesta F, Mackley M (2009) The rheology and modelling of chemically treated carbon nanotube suspensions. J Rheol 53(3):547–573

    Google Scholar 

  48. Mokdad B, Pruliere E, Ammar A, Chinesta F (2007) On the simulation of kinetic theory models of complex fluids using the Fokker-Planck approach. Appl Rheol 17(2):1–14. 26494

    Google Scholar 

  49. Mokdad B, Ammar A, Normandin M, Chinesta F, Clermont JR (2010) A fully deterministic micro-macro simulation of complex flows involving reversible network fluid models. Math Comput Simul 80:1936–1961

    Article  MathSciNet  MATH  Google Scholar 

  50. Ottinger HC (1996) Stochastic processes in polymeric fluids. Springer, Berlin

    Book  Google Scholar 

  51. Petrie C (1999) The rheology of fibre suspensions. J Non-Newton Fluid Mech 87:369–402

    Article  MATH  Google Scholar 

  52. Pruliere E, Ammar A, El Kissi N, Chinesta F (2009) Recirculating flows involving short fiber suspensions: numerical difficulties and efficient advanced micro-macro solvers. Arch Comput Methods Eng 16:1–30

    Article  MathSciNet  MATH  Google Scholar 

  53. Ryckelynck D, Chinesta F, Cueto E, Ammar A (2006) On the a priori model reduction: overview and recent developments. Arch Comput Methods Eng 13(1):91–128

    Article  MathSciNet  MATH  Google Scholar 

  54. Tucker Ch (1991) Flow regimes for fiber suspensions in narrow gaps. J Non-Newton Fluid Mech 39:239–268

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Chinesta.

Additional information

This work has been partially supported by the IUF—Institut Universitaire de France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinesta, F. From Single-Scale to Two-Scales Kinetic Theory Descriptions of Rods Suspensions. Arch Computat Methods Eng 20, 1–29 (2013). https://doi.org/10.1007/s11831-013-9079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-013-9079-3

Keywords

Navigation