Skip to main content

Advertisement

Log in

Are microbial symbionts involved in the speciation of the gall-inducing aphid, Slavum wertheimae?

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Microbial symbionts have come to be recognized as agents in the speciation of their eukaryote hosts. In this study, we asked if bacterial symbionts are, or were in the past, involved in the speciation of the gall-inducing aphid Slavum wertheimae (Hemiptera: Aphididae). This aphid is specific to the tree Pistacia atlantica, which has a fragmented distribution among mesic and xeric habitats, leading to corresponding fragmentation of the aphid population. Previous studies revealed genetic differentiation among populations of the gall-inducing aphid, suggesting cryptic allopatric speciation. Pistacia atlantica trees show no such variation. By means of diagnostic PCR, we screened several populations of S. wertheimae from mesic and xeric sites in Israel for the presence of nine known aphid symbionts: Arsenophonus, Hamiltonella, Regiella, Rickettsia, Rickettsiella, Serratia, Spiroplasma, Wolbachia, and X-type, as well as Cardinium, known to be a reproductive manipulator. Only one symbiont, Wolbachia, was detected in S. wertheimae. Wolbachia was found in all the aphids of the mesic populations, compared to 26% in the aphids from the xeric populations. Multilocus Sequence typing of Wolbachia revealed new haplotypes in the fbpA and coxA genes in both the mesic and xeric populations. Phylogenetic analysis showed that Wolbachia of S. wertheimae is closely related to Wolbachia strains from assorted hosts, mostly lepidopterans, but only distantly related to Wolbachia strains from other aphid species. We conclude that the cryptic speciation of mesic and xeric populations of S. wertheimae was likely driven by geographical isolation rather than by Wolbachia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Augustinos AA, Santos-Garcia D, Dionyssopoulou E et al (2011) Detection and characterization of Wolbachia infections in natural populations of aphids: Is the hidden diversity fully unraveled? PLoS One 6:e28695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avrani S, Ben-Shlomo R, Inbar M (2012) Genetic structure of a galling aphid Slavum wertheimae and its host tree Pistacia atlantica across an Irano-Turanian distribution: from fragmentation to speciation?. Tree Genet Genom 8: 811–820

    Article  Google Scholar 

  • Baldo L, Hotopp JCD, Jolley KA et al (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72:7098–7110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett GM, Moran NA (2015) Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci 112: 10169–10176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolnick DI, Fitzpatrick BM (2007) Sympatric speciation: models and empirical evidence. Annu Rev Ecol Evol Syst 38: 459–487

    Article  Google Scholar 

  • Bordenstein SR, O’Hara FP, Werren JH (2001) Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409:707–710

    Article  CAS  PubMed  Google Scholar 

  • Brucker RM, Bordenstein SR (2012) Speciation by symbiosis. Trends Ecol Evol 27:443–451

    Article  PubMed  Google Scholar 

  • Brucker RM, Bordenstein SR (2013) The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341: 667–669

    Article  CAS  PubMed  Google Scholar 

  • Butlin RK, Galindo J, Grahame JW (2008) Sympatric, parapatric or allopatric: the most important way to classify speciation?. Philos Trans R Soc Lond B Biol Sci 363: 2997–3007

    Article  PubMed  PubMed Central  Google Scholar 

  • Correa CC, Ballard JWO (2016) Wolbachia associations with insects: Winning or losing against a master manipulator. Front Ecol Evol 3:153

    Article  Google Scholar 

  • Danin A (1999) Sandstone outcrops: a major refugium of Mediterranean flora in the xeric part of Jordan. Isr J. Plant Sci 47:179–187

    Google Scholar 

  • Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34

    Article  CAS  PubMed  Google Scholar 

  • Engelstädter J, Hurst GDD (2009) The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst 40: 127–149

    Article  Google Scholar 

  • Ferrari J, West JA, Via S, Godfray HCJ (2012) Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution 66: 375–390

    Article  PubMed  Google Scholar 

  • Gilbert SF, Bosch TCG, Ledón-Rettig C (2015) Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet 16:611–622

    Article  CAS  PubMed  Google Scholar 

  • Heddi A, Grenier A-M, Khatchadourian C et al (1999) Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont, and Wolbachia. Proc Natl Acad Sci 96: 6814–6819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inbar M, Kark S (2007) Gender-related developmental instability and herbivory of Pistacia atlantica across a steep environmental gradient. Folia Geobot 42: 401–410

    Article  Google Scholar 

  • Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9:393–405

    Article  CAS  PubMed  Google Scholar 

  • Jones RT, Bressan A, Greenwell AM, Fierer N (2011) Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian Islands. Appl Environ Microbiol 77:8345–8349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Li YY, Floate KD, Fields PG, Pang BP (2014) Review of treatment methods to remove Wolbachia bacteria from arthropods. Symbiosis 62:1–15

    Article  Google Scholar 

  • McLean AHC, Parker BJ, Hrček J et al (2016) Insect symbionts in food webs. Philos Trans R Soc Lond B Biol Sci 371:20150325

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran NA, Russell JA, Koga R, Fukatsu T (2005) Evolutionary relationships of three new species of enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol 71:3302–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Ann Rev Genet 42:165–190

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Kawai S, Yukuhiro F et al (2009) Prevalence of Cardinium bacteria in planthoppers and spider mites and taxonomic revision of “Candidatus Cardinium hertigii” based on detection of a new Cardinium group from biting midges. Appl Environ Microbiol 75:6757–6763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver KM, Martinez AJ (2014) How resident microbes modulate ecologically-important traits of insects. Curr Opin Insect Sci 4: 1–7

    Article  PubMed  Google Scholar 

  • Russell JA, Weldon S, Smith AH et al (2013) Uncovering symbiont-driven genetic diversity across North American pea aphids. Mol Ecol 22:2045–2059

    Article  PubMed  Google Scholar 

  • Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741

    Article  CAS  PubMed  Google Scholar 

  • Simon J-C, Boutin S, Tsuchida T et al (2011) Facultative symbiont infections affect aphid reproduction. PLoS One 6:e21831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skaljac (2016) Bacterial Symbionts of Aphids (Hemiptera: Aphididae). In: Vilcinskas E (ed) Biology and Ecology of Aphids, CRC press, Boca Raton, pp 100–125

    Chapter  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Taylor GP, Coghlin PC, Floate KD, Perlman SJ (2011) The host range of the male-killing symbiont Arsenophonus nasoniae in filth fly parasitioids. J Invertebr Pathol 106:371–379

    Article  PubMed  Google Scholar 

  • Tsuchida T, Koga R, Shibao H et al (2002) Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol Ecol 11:2123–2135

    Article  CAS  PubMed  Google Scholar 

  • Vavre F, Kremer N (2014) Microbial impacts on insect evolutionary diversification: from patterns to mechanisms. Curr Opin Insect Sci 4: 29–34

    Article  PubMed  Google Scholar 

  • Vogel KJ, Moran NA (2013) Functional and evolutionary analysis of the genome of an obligate fungal symbiont. Genom Biol Evol 5:891–904

    Article  Google Scholar 

  • Wang Z, Shen Z-R, Song Y et al (2009) Distribution and diversity of Wolbachia in different populations of the wheat aphid Sitobion miscanthi (Hemiptera: Aphididae) in China. Eur J Entomol 106: 49–55

    Article  CAS  Google Scholar 

  • Wang Z, Su X-M, Wen J et al (2014) Widespread infection and diverse infection patterns of Wolbachia in Chinese aphids. Insect Sci 21: 313–325

    Article  PubMed  Google Scholar 

  • Weinert LA, Araujo-Jnr E V., Ahmed MZ, Welch JJ (2015) The incidence of bacterial endosymbionts in terrestrial arthropods. Proc R Soc B 282: 20150249

    Article  PubMed  PubMed Central  Google Scholar 

  • Wool D (2004) Galling aphids: specialization, biological complexity, and variation. Annu Rev Entomol 49:175–192

    Article  CAS  PubMed  Google Scholar 

  • Wool D, Bogen R (1999) Ecology of the gall-forming aphid, Slavum wertheimae, on Pistacia atlantica: population dynamics and differential herbivory. Isr J Zool 45:247–260

    Google Scholar 

  • Zchori-Fein E, Bourtzis K (2012) Manipulative tenants: bacteria associated with arthropods. CRC Press, Boca Raton

    Google Scholar 

  • Zug R, Hammerstein P (2015) Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol Rev 90:89–111

    Article  PubMed  Google Scholar 

  • Zytynska SE, Weisser WW (2016) The natural occurrence of secondary bacterial symbionts in aphids. Ecol Entomol 41: 13–26

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Moshe Inbar, Einat Zchori-Fein, and three anonymous reviewers for critical comments on earlier versions of the manuscript. We also thank Kerry Oliver for supplying us specimens for positive controls. The study was funded by an internal research grant from “Oranim” College of Education, and in part by the Israel Science Foundation (Grant No. 276/14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elad Chiel.

Additional information

Handling editor: John F. Tooker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 KB)

Supplementary material 2 (XLSX 153 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amit, L., Ben-Shlomo, R. & Chiel, E. Are microbial symbionts involved in the speciation of the gall-inducing aphid, Slavum wertheimae?. Arthropod-Plant Interactions 11, 475–484 (2017). https://doi.org/10.1007/s11829-017-9495-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-017-9495-7

Keywords

Navigation