Skip to main content
Log in

Interspecific differences in milkweeds alter predator density and the strength of trophic cascades

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Trophic cascades occur when predators benefit plants by consuming herbivores, but the overall strength of a trophic cascade depends upon the way species interactions propagate through a system. For example, plant resistance to, or tolerance of, herbivores reduces the potential magnitude of a trophic cascade. At the same time, plants can also affect predator foraging or consumption in ways that either increase or decrease the strength of trophic cascades. In this study, we investigated the effects of plant variation on cascade strength by manipulating predator access to aphid populations on two species of milkweed: the slower-growing, putatively more-defended Asclepias syriaca and the faster-growing, putatively less-defended Asclepias incarnata. Predatory insects increased plant growth and survival for both species, but the strength of these trophic cascades was greater on A. incarnata, which supported more aphid growth early in the season than did A. syriaca. More predators were observed per aphid on A. incarnata, and cage treatments generated significant patterns consistent with predator aggregation on A. incarnata, but not A. syriaca. Although predators strongly affected aphids, this effect did not differ consistently between milkweed species. Plant tolerance to herbivory may therefore be the primary driver of the difference in trophic cascade strength observed. Importantly, we observed that the timing of predator exclusion affected plant growth and survival differently, indicating that measures of “cascade strength” may change with phenology and plant physiological responses. Together, our results suggest a mechanism by which differences in resource allocation patterns could explain differences in growth, phenology, and cascade strength between species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal AA (2004) Plant defense and density dependence in the population growth of herbivores. Am Nat 164:113–120. doi:10.1086/420980

    Article  PubMed  Google Scholar 

  • Agrawal AA (2005) Natural selection on common milkweed (Asclepias syriaca) by a community of specialized insect herbivores. Evol Ecol Res 7:651–667

    Google Scholar 

  • Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:S132–S149

    Article  PubMed  Google Scholar 

  • Agrawal AA, Fishbein M (2008) Phylogenetic escalation and decline of plant defense strategies. Proc Natl Acad Sci USA 105:10057–10060. doi:10.1073/pnas.0802368105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal AA, Erwin AC, Cook SC (2008) Natural selection on and predicted responses of ecophysiological traits of swamp milkweed (Asclepias incarnata). J Ecol 96:536–542. doi:10.1111/j.1365-2745.2008.01365.x

    Article  Google Scholar 

  • Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytol 194:28–45. doi:10.1111/j.1469-8137.2011.04049.x

    Article  CAS  PubMed  Google Scholar 

  • Barton KE, Koricheva J (2010) The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis. Am Nat 175:481–493. doi:10.1086/650722

    Article  PubMed  Google Scholar 

  • Bell T (2002) The ecological consequences of unpalatable prey: phytoplankton response to nutrient and predator additions. Oikos 99:59–68. doi:10.1034/j.1600-0706.2002.990106.x

    Article  Google Scholar 

  • Borer ET, Seabloom EW, Shurin JB, Anderson KE, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2005) What determines the strength of a trophic cascade? Ecology 86:528–537

    Article  Google Scholar 

  • Borer ET, Halpern BS, Seabloom EW (2006) Asymmetry in community regulation: effects of predators and productivity. Ecology 87:2813–2820

    Article  PubMed  Google Scholar 

  • Bottrell DG, Barbosa P, Gould F (1998) Manipulating natural enemies by plant variety selection and modification: a realistic strategy? Annu Rev Entomol 43:347–367

    Article  CAS  PubMed  Google Scholar 

  • Brett MT, Goldman CR (1996) A meta-analysis of the freshwater trophic cascade. Proc Natl Acad Sci 93:7723–7726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chacón JM, Asplen MK, Heimpel GE (2012) Combined effects of host-plant resistance and intraguild predation on the soybean aphid parasitoid Binodoxys communis in the field. Biol Control 60:16–25

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  CAS  PubMed  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, West Sussex

    Book  Google Scholar 

  • de Roode JC, Pedersen AB, Hunter MD, Altizer S (2008) Host plant species affects virulence in monarch butterfly parasites. J Anim Ecol 77:120–126. doi:10.1111/j.1365-2656.2007.01305.xER

    Article  PubMed  Google Scholar 

  • Desneux N, Barta RJ, Hoelmer KA, Hopper KR, Heimpel GE (2009) Multifaceted determinants of host specificity in an aphid parasitoid. Oecologia 160:387–398. doi:10.1007/s00442-009-1289-x

    Article  PubMed  Google Scholar 

  • Evans EW (2008) Multitrophic interactions among plants, aphids, alternate prey and shared natural enemies—a review. Eur J Entomol 105:369–380

    Article  Google Scholar 

  • Fornoni J (2011) Ecological and evolutionary implications of plant tolerance to herbivory. Funct Ecol 25:399–407. doi:10.1111/j.1365-2435.2010.01805.x

    Article  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression. Sage, Thousand Oaks

    Google Scholar 

  • Groeters FR (1993) Tests for host-associated fitness trade-offs in the milkweed-oleander aphid. Oecologia 93:406–411

    Article  Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94:421–425

    Article  Google Scholar 

  • Hare JD (2002) Plant genetic variation in tritrophic interactions. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge Books Online, Cambridge, pp 8–43

    Chapter  Google Scholar 

  • Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61. doi:10.1111/j.1469-8137.2007.02330.x

    Article  CAS  PubMed  Google Scholar 

  • Helms SE, Connelly SJ, Hunter MD (2004) Effects of variation among plant species on the interaction between a herbivore and its parasitoid. Ecol Entomol 29:44–51

    Article  Google Scholar 

  • Hochwender CG, Marquis RJ, Stowe KA (2000) The potential for and constraints on the evolution of compensatory ability in Asclepias syriaca. Oecologia 122:361–370

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Ivey CT, Lipow SR, Wyatt R (1999) Mating systems and interfertility of swamp milkweed (Asclepias incarnata ssp. incarnata and ssp. pulchra). Heredity 82:25–35

    Article  Google Scholar 

  • Kersch-Becker MF, Thaler JS (2015) Plant resistance reduces the strength of consumptive and non-consumptive effects of predators on aphids. J Anim Ecol 84:1222–1232

    Article  PubMed  Google Scholar 

  • Malcolm SB (1986) Aposematism in a soft-bodied insect—a case for kin selection. Behav Ecol Sociobiol 18:387–393

    Article  Google Scholar 

  • Malcolm SB (1989) Disruption of web structure and predatory behavior of a spider by plant-derived chemical defenses of an aposematic aphid. J Chem Ecol 15:1699–1716. doi:10.1007/BF01012259

    Article  CAS  PubMed  Google Scholar 

  • Malcolm SB (1990) Chemical defence in chewing and sucking insect herbivores: plant-derived cardenolides in the monarch butterfly and oleander aphid. Chemoecology 1:12–21

    Article  CAS  Google Scholar 

  • Malcolm SB (1991) Cardenolide-mediated interactions between plants and herbivores. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites., Volume I: The chemical participantsAcademic Press Inc., London, pp 251–296

    Chapter  Google Scholar 

  • Malcolm SB (1992) Prey defence and predator foraging. In: Crawley MJ (ed) Natural enemies: the population biology of predators, parasites, and disease. Blackwell Scientific Publications, Boston, pp 458–475

    Chapter  Google Scholar 

  • Malcolm SB (1995) Milkweeds, monarch butterflies and the ecological significance of cardenolides. Chemoecology 5:101–117

    Google Scholar 

  • Malcolm SB, Zalucki MP (1996) Milkweed latex and cardenolide induction may resolve the lethal plant defence paradox. Entomol Exp Appl 80:193–196

    Article  CAS  Google Scholar 

  • Marquis RJ, Whelan C (1996) Plant morphology and recruitment of the third trophic level: subtle and little-recognized defenses? Oikos 75:330. doi:10.2307/3546260

    Article  Google Scholar 

  • Mohl EK (2014) The multi-trophic context of plant defense: ecological and evolutionary implications of variation in milkweeds. Dissertation, University of Minnesota

  • Mooney KA, Jones P, Agrawal AA (2008) Coexisting congeners: demography, competition, and interactions with cardenolides for two milkweed-feeding aphids. Oikos 117:450–458. doi:10.1111/j.2007.0030-1299.16284.x

    Article  CAS  Google Scholar 

  • Mooney KA, Halitschke R, Kessler A, Agrawal AA (2010) Evolutionary trade-offs in plants mediate the strength of trophic cascades. Science 327:1642–1644. doi:10.1126/science.1184814

    Article  CAS  PubMed  Google Scholar 

  • Murdoch WW (1966) “Community structure, population control, and competition”—A Critique. Am Nat 100:219–226

    Article  Google Scholar 

  • Ode PJ (2006) Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. Annu Rev Entomol 51:163–185. doi:10.1146/annurev.ento.51.110104.151110

    Article  CAS  PubMed  Google Scholar 

  • Oksanen L, Fretwell SD, Arruda J, Niemela P (1981) Exploitation ecosystems in gradients of primary productivity. Am Nat 118:240–261

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2014) nlme: linear and nonlinear mixed effects models. R package version 3, pp 1–117

  • Polis GA (1999) Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos 86:3–15

    Article  Google Scholar 

  • Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147:813–846

    Article  Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among 3 trophic levels—influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ruppel RF (1983) Cumulative insect-days as an index of crop protection. J Econ Entomol 76:375–377

    Article  Google Scholar 

  • Schmitz OJ, Hamback PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am Nat 155:141–153

    Article  PubMed  Google Scholar 

  • Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163

    Article  Google Scholar 

  • Shurin JB, Gruner DS, Hillebrand H (2006) All wet or dried up? Real differences between aquatic and terrestrial food webs RID A-5166-2010. Proc R Soc B Biol Sci 273:1–9. doi:10.1098/rspb.2005.3377

    Article  Google Scholar 

  • Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, et al. (2015) A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol Lett 18:1406–1419

    Article  PubMed  Google Scholar 

  • Stevens MT, Kruger EL, Lindroth RL (2008) Variation in tolerance to herbivory is mediated by differences in biomass allocation in aspen. Funct Ecol 22:40–47. doi:10.1111/j.1365-2435.2007.01356.x

    Google Scholar 

  • Strong DR (1992) Are trophic cascades all wet—differentiation and donor-control in speciose ecosystems. Ecology 73:747–754

    Article  Google Scholar 

  • Tao L, Hunter MD (2013) Allocation of resources away from sites of herbivory under simultaneous attack by aboveground and belowground herbivores in the common milkweed, Asclepias syriaca. Arthropod Plant Interact 7:217–224. doi:10.1007/s11829-012-9235-y

    Article  Google Scholar 

  • Tao L, Berns AR, Hunter MD (2014) Why does a good thing become too much? Interactions between foliar nutrients and toxins determine performance of an insect herbivore. Funct Ecol 28:190–196

    Article  Google Scholar 

  • Wise MJ, Abrahamson WG (2005) Beyond the compensatory continuum: environmental resource levels and plant tolerance of herbivory. Oikos 109:417–428

    Article  Google Scholar 

  • Wise MJ, Abrahamson WG (2007) Effects of resource availability on tolerance of herbivory: a review and assessment of three opposing models. Am Nat 169:443–454

    Article  PubMed  Google Scholar 

  • Woodson RE (1954) The North American species of Asclepias L. Ann Mo Bot Gard 41:1–211

    Article  Google Scholar 

  • Zehnder CB, Hunter MD (2007) A comparison of maternal effects and current environment on vital rates of Aphis nerii, the milkweed-oleander aphid. Ecol Entomol 32:172–180

    Article  Google Scholar 

Download references

Acknowledgments

We thank P. Tiffin and R. Shaw for helpful comments on an earlier version of the work; E. Baeten, P. Day, J. Dregni, L. Fees, S. Gunderson, D. Lemerond, S. Lueth, D. Malepsy, J. Malepsy, J. Reynolds, R. Scheel, S. Wolf, and E. Xie for assistance in the field; A. Rendahl for statistical consulting; and the Dayton Fund of the Bell Museum of Natural History, the University of Minnesota, and a National Science Foundation IGERT Grant (NSF DGE-0653827) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily K. Mohl.

Ethics declarations

Conflict of interest

The authors declare that they have not conflicts of interest.

Additional information

Handling Editor: Heikki Hokkanen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohl, E.K., Santa-Martinez, E. & Heimpel, G.E. Interspecific differences in milkweeds alter predator density and the strength of trophic cascades. Arthropod-Plant Interactions 10, 249–261 (2016). https://doi.org/10.1007/s11829-016-9430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-016-9430-3

Keywords

Navigation