Skip to main content

Advertisement

Log in

Diversity of gall wasps (Hymenoptera: Cynipidae) associated with oak trees (Fagaceae: Quercus) in a fragmented landscape in Mexico

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Habitat fragmentation reduces the available habitat area and increases both the distance between fragments and the amount of fragment edges. Therefore, there are more probabilities of plant population size reduction and species extinction. In the same way, biotic and abiotic changes associated with forest fragmentation can dramatically alter plant growth and phenological patterns. We conducted a 3-year study to analyze effects of habitat fragmentation and seasonal variation on host plant quality (quantity of leaves, diameter at breast height, tree height), gall abundance and species richness in a temperate oak forest. Our results show that host plant quality was significantly higher in isolated oaks and small fragments, increasing the abundance and species richness of oak gall wasp species in most fragmented habitats. Oak canopy cover is altered by forest fragmentation, there being higher production of leaves on trees that are more exposed to fragmentation, and can provide important resources for maintaining gall wasp species diversity in a fragmented landscape. We found higher gall wasp richness and abundance in autumn than in the spring, which matches with the higher quantity of leaves in this season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahamson WG, Melika G, Scrafford R, Csóka G (1998) Gall-inducing insects provide insights into plant systematic relationships. Am J Bot 85:1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Abrahamson WG, Hunter MD, Melika G, Price PW (2003) Cynipid gall-wasp communities correlate with oak chemistry. J Chem Ecol 29:209–223

    Article  CAS  PubMed  Google Scholar 

  • Agrawal A (2000) Overcompensation of plants in response to herbivory and the by-product benefits of mutualism. Trends Plant Sci 5:309–313

    Article  CAS  PubMed  Google Scholar 

  • Aguilar R, Guilardi A, Vega E, Skutsch M, Oyama K (2012) Sprouting productivity and allometric relationships of two oak species managed for traditional charcoal making in central Mexico Biomass Bioenerg 36:192–207

    Google Scholar 

  • Aldrich PR, Hamrick JL (1998) Reproductive dominance of pasture trees in a fragmented tropical forest mosaic. Science 281:103–105

    Article  CAS  PubMed  Google Scholar 

  • Araùjo WS, Scareli-Santos C, Guilherme FAG, Cuevas-Reyes P (2013) Comparing galling insect richness among Neotropical savannas: effects of plant richness, vegetation structure and super-host presence. Biodiv Conserv 22:1083–1094

    Article  Google Scholar 

  • Arnold AE, Asquith NM (2002) Herbivory in a fragmented tropical forest: patterns from islands at Lago Gatun, Panama. Biodivers Conserv 11:1663–1680

    Article  Google Scholar 

  • Asbjornsen H, Ashton MS, Vogt DJ, Palacios S (2004) Effects of habitat fragmentation on the buffering capacity of edge environments in a seasonally dry tropical oak forest ecosystem in Oaxaca, Mexico. Agric Ecosyst Environ 103:481–495

    Article  Google Scholar 

  • Bach CE, Kelly D, Hazlett BA (2005) Forest edges benefit adults, but not seedlings, of the mistletoe Alepis flavida (Loranthaceae). J Ecol 93:79–86

    Article  Google Scholar 

  • Bailey R, Schoönrogge K, Cook JM, Melika G, Csóka G, Thuróczy C, Stone GN (2009) Host niches and defensive extended phenotypes structure parasitoid wasp communities. PLoS Biol 8:e1000179

    Article  Google Scholar 

  • Barberena-Arias MF, Aide TM (2002) Variation in species and tropic composition of insect communities in Puerto Rico. Biotropica 34:357–367

    Article  Google Scholar 

  • Basset Y (1991) Leaf production of an overstorey rain forest tree and its effects on the temporal distribution of the associated insect herbivores. Oecologia 88:211–219

    Article  Google Scholar 

  • Beckman NG, Neuhauser C, Muller-Landau C (2012) The interacting effects of clumped seed dispersal and distance and density dependent mortality on seedling recruitment patterns. J Ecol 100:862–873

    Article  Google Scholar 

  • Bocco G, Mendoza ME, Masera OR (2001) La dinámica del cambio de uso del suelo en Michoacán Una propuesta metodológica para el estudio de los procesos de deforestación Investigaciones Geográficas. Boletín del Instituto de Geografía UNAM 44:18–38

    Google Scholar 

  • Broadbent EN, Asner GP, Keller M, Knapp DE, Oliveira PJC, Silva JN (2008) Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol Conserv 141:1745–1757

    Article  Google Scholar 

  • Bruna EM, Noguera-Ribeiro MB (2005) The compensatory responses of an understory herb to experimental damage are habitat-dependent. Am J Bot 92:2101–2106

    Article  PubMed  Google Scholar 

  • Bucher R, Herrmann JD, Schüepp C, Herzog F, Entling MH (2010) Arthropod colonisation of trees in fragmented landscapes depends on species traits. Open Ecol J 3:111–117

    Article  Google Scholar 

  • Carlón-Allende T, Mendoza ME, López EG, Morales-Manilla LM (2009) Hydrogeographical regionalization: an approach for evaluating the effects of land cover change on watersheds: a case study on the Cuitzeo lake watershed Central México. Water Resour Manag 23:2587–2803

    Article  Google Scholar 

  • Castillo-Santiago MA, Ghilardi A, Oyama K, Hernández-Stefanoni JL, Torres I, Flamenco-Sandoval A, Fernández A, Mas JF (2013) Estimating the spatial distribution of woody biomass suitable for charcoal making from remote sensing and geostatistics in central Mexico. Energy Sustain Dev 17:177–188

    Article  Google Scholar 

  • Chust G, Garbin L, Pujade-Villar J (2007) Gall wasps and their parasitoids in cork oak fragmented forest. Ecol Entomol 32:82–91

    Article  Google Scholar 

  • Colwell RK (2011) Estimates: statistical estimation of species richness and shared species from samples. Version 9. User’s guide and application

  • Cornell HV, Washburn JO (1979) Evolution of the richness-area correlation for cynipid gall wasps on oak trees: a comparison of two geographic areas. Evolution 33:257–274

    Article  Google Scholar 

  • Cuevas-Reyes P, Quesada M, Hanson P, Dirzo R, Oyama K (2004a) Diversity of gall-inducing insects in a Mexican tropical dry forest: the importance of plant species richness, life-forms, host plant age and plant density. J Ecol 92:707–716

    Article  Google Scholar 

  • Cuevas-Reyes P, Quesada M, Siebe C, Oyama K (2004b) Spatial patterns of herbivory by gall-forming insects: a test of the soil fertility hypothesis in a Mexican tropical dry forest. Oikos 107:181–189

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on diversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Faivre-Rampant P, Lesur I, Boussardon C, Bitton F, Martin-Magniette ML, Bodénès C, Le Provost G, Bergès H, Fluch S, Kremer A, Plomion C (2011) Analysis of BAC end sequences in oak, a keystone forest tree species, providing insight into the composition of its genome. BMC Genom 12:292

    Article  Google Scholar 

  • Fáveri SB, Vasconcelos HL, Dirzo R (2008) Effects of Amazonian forest fragmentation on the interaction between plants, insect herbivores, and their natural enemies. J Trop Ecol 24:57–64

    Article  Google Scholar 

  • Fernandes GW, Price PW (1988) Biogeographical gradients in galling species richness tests of hypotheses. Oecologia 76:161–167

    Article  Google Scholar 

  • Floren A, Linsenmair KE (2001) The influence of anthropogenic disturbances on the structure of arboreal arthropod communities. Plant Ecol 153:153–167

    Article  Google Scholar 

  • Fuchs EJ, Lobo JA, Quesada M (2003) Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinat. Conserv Biol 17:149–157

    Article  Google Scholar 

  • Gagnon PR, Bruna EM, Paulo Rubim P, Darrigo MR, Littell RC, Uriarte M, Kress WJ (2011) Growth of an understory herb is chronically reduced in Amazonian forest fragments. Biol Conserv 144:830–835

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Hagen M, Kissling WD, Rasmussen C, De Aguiar MAM, Brown LE, Carstensen DW, Alves-Dos-Santos I, Dupont YL, Edwards FK, Genini J, Guimarães PR Jr, Jenkins GB, Jordano P, Kaiser-Bunbury CN, Ledger ME, Maia KP, Marquitti FMD, Mclaughlin O, Morellato LPC, O’Gorman EJ, Trøjelsgaard K, Tylianakis JM, Vidal MM, Woodward G, Olesen JM et al (2012) Biodiversity, species interactions and ecological networks in a fragmented world. Adv Ecol Res 46:89–210

    Article  Google Scholar 

  • Harrington TC (1986) Growth decline of wind-dispersed red spruce and balsam are in the White Mountains. Can J Forest Res 16:232–238

    Article  Google Scholar 

  • Hayward A, Stone GN (2005) Oak gall wasp communities: evolution and ecology. Basic Appl Ecol 6:35–443

    Article  Google Scholar 

  • Herrerías-Diego Y, Quesada M, Stoner K, Lobo JA (2006) Effects of forest fragmentation on phenological patterns and reproductive success of the tropical dry forest tree Ceiba aesculifolia. Conserv Biol 20:1111–1120

    Article  PubMed  Google Scholar 

  • IBM Corp. Released (2012) IBM SPSS statistics for windows, Version 21.0. IBM Corp, Armonk, NY

  • Kapos V, Wandelli E, Camargo J, Ganade G (1997) Edge-related changes in environment and plant responses due to forest fragmentation in central Amazonia. In: Laurance WF, Bierregaard RO (eds) Tropical forest remnants: ecology, management, and conservation of fragmented communities. University of Chicago Press, Chicago, pp 33–44

    Google Scholar 

  • Karban R (2007) Deciduous leaf drop reduces insect herbivory. Oecologia 153:81–88

    Article  PubMed  Google Scholar 

  • Klein AM, Steffan-Dewenter I, Buchoroli D, Tscharntke T (2002) Effects of land-use intensity in tropical agroforestry systems on coffee flower-visiting and trap-nesting bees and wasps. Conserv Biol 16:1003–1014

    Article  Google Scholar 

  • Kolb A, Diekmann M (2005) Effects of life-history traits on responses of plant species to forest fragmentation. Conserv Biol 19:929–938

    Article  Google Scholar 

  • Lara ACF, Fernandes GW, Goncalves-Alvim SJ (2002) Test of hypotheses on patterns of gall distribution along an altitudinal gradient. Trop Zool 15:219–232

    Article  Google Scholar 

  • Laurance WF (2008) Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141:1731–1744

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam, p 853

    Google Scholar 

  • López E, Bocco G, Mendoza M, Duhau E (2001) Predicting land-cover and land-use change in the urban fringe. A case in Morelia city, Mexico. Landscape Urban Plan 55:271–285

    Article  Google Scholar 

  • López E, Bocco G, Mendoza M, Aguirre JR (2006) Peasant emigration and land use change at the watershed level: a GIS-based approach in Central Mexico. Agric Syst 90:62–78

    Article  Google Scholar 

  • Lovejoy TE, Bierregaard RO, Rylands A, Malcolm J, Quintela C, Harper L, Brown K, Powell A, Schubart H, Hays M (1986) Edge and other effects of isolation on Amazon forest fragments. In: Soulé ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, pp 257–285

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Magrach A, Laurance WF, Larrinaga AR, Santamaria L (2014) Meta-analysis of the effects of forest fragmentation on interspecific interactions. Conserv Biol 28:1342–1348

    Article  PubMed  Google Scholar 

  • Maldonado-López Y, Cuevas-Reyes P, Stone GN, Nieves-Aldrey JL, Oyama K (2015) Gall wasp community response to fragmentation of oak tree species: importance of fragment size and isolated trees. Ecosphere 6(3):31

    Article  Google Scholar 

  • Marchand PJ, Goulet FL, Harrington TC (1986) Death by attrition: an hypothesis for wave mortality of subalpine Abies balsamea. Can J Forest Res 16:591–596

    Article  Google Scholar 

  • Masera OR, Ordoñez MJ, Dirzo R (1997) Carbon emissions from Mexican forest: current situation and long-term scenarios. Clim Change 35:265–295

    Article  CAS  Google Scholar 

  • McDonald RI, Urban DL (2004) Forest edges and tree growth rates in the North Carolina piedmont. Ecology 85:2258–2266

    Article  Google Scholar 

  • McGarigal K, McComb WC (1999) Forest fragmentation effects on breeding birds in the Oregon Coast Range. In: Rochelle JA, Lehman LA, Wisniewski J (eds) Forest fragmentation: wildlife and management implications. Koninklijke Brill NV, Leiden, pp 223–246

    Google Scholar 

  • Mendoza EM, López EG, Geneletti D, Pérez-Saliscrup DR, Salinas V (2011) Analysing land cover and land use changes processes at watershed level: a multitemporary studio of the lake Cuitzeo watershed México (1975–2003). Appl Geogr 31:237–250

    Article  Google Scholar 

  • Miller KF, Quine CP, Hunt J (1987) The assessment of wind exposure for forestry in upland Britain. Forestry 60:179–192

    Article  Google Scholar 

  • Mopper S (2005) Phenology—how time creates spatial structure in insect populations. Ann Zool Fenn 42:327–333

    Google Scholar 

  • Müller J, Goßner M (2007) Single host trees in a closed forest canopy matrix: a highly fragmented landscape? J Appl Entomol 131:613–620

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Tree 10:58–62

    CAS  PubMed  Google Scholar 

  • Nieves-Aldrey JL (2001) Hymenoptera, Cynipidae. In: Ramos MA (ed) Fauna Ibérica, vol 16. Museo Nacional de Ciencias Naturales CSIC, Madrid, p 636

    Google Scholar 

  • Rabasa SG, Gutiérrez D, Escudero A (2007) Metapopulation structure and habitat quality in modeling dispersal in the butterfly Iolana iolas. Oikos 116:793–806

    Article  Google Scholar 

  • Ranius T, Jansson N (2000) The influence of forest regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks. Biol Conserv 95:85–94

    Article  Google Scholar 

  • Rautiainen M, Stenberg P, Nilson T (2005) Estimating canopy cover in Scots pine stands. Silva Fenn 39:137–142

    Article  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. http://www.R-project.org/

  • Rosenzweig ML (1995) Species diversity in space and time. University Press, Cambridge

    Book  Google Scholar 

  • Ruiz-Guerra B, Guevara R, Mariano NA, Dirzo R (2010) Insect herbivory declines with forest fragmentation and covaries with plant regeneration mode: evidence from a Mexican tropical rain forest. Oikos 119:317–325

    Article  Google Scholar 

  • SAS (2000) Categorical data analysis using the SAS system. SAS Institute, Cary, NC

    Google Scholar 

  • Saunders DA, Hobbs HJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–27

    Article  Google Scholar 

  • Schnitzler FR, Hartley S, Lester PJ (2011) Trophic-level responses differ at plant, plot, and fragment levels in urban native forest fragments: a hierarchical analysis. Ecol Entomol 36:241–242

    Article  Google Scholar 

  • Silva CA, Simonetti JA (2009) Inquiring into the causes of depressed folivory in a fragmented temperate forest. Acta Oecol 35:458–461

    Article  Google Scholar 

  • Sizer N, Tanner EVJ (1999) Responses of woody plant seedlings to edge formation in a lowland tropical rainforest, Amazonia. Biol Conserv 91:135–142

    Article  Google Scholar 

  • Stiles A, Scheiner S (2010) A multi-scale analysis of fragmentation effects on remnant plant species richness in Phoenix, Arizona. J Biogeogr 37:1721–1729

    Article  Google Scholar 

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522

    Article  Google Scholar 

  • Stone GN, Schönrogge K, Atkinson RJ, Bellido D, Pujade-Villar J (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annu Rev Entomol 47:633–668

    Article  CAS  PubMed  Google Scholar 

  • Stone GN, Hernandez-Lopez A, Nicholls JA, di Pierro E, Pujade-Villar J, Melika G, Cook JM (2009) Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gall wasps. Evolution 63:854–869

    Article  CAS  PubMed  Google Scholar 

  • Taper ML, Case TJ (1987) Interactions between oak tannins and parasite structure: unexpected benefits of tannins to gall-wasps. Oecologia 71:254–261

    Article  Google Scholar 

  • Terborgh J et al (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926

    Article  CAS  PubMed  Google Scholar 

  • Thornton D, Branch L, Sunquist M (2011) Passive sampling effects and landscape location alter associations between species traits and response to fragmentation. Ecol Appl 21:817–829

    Article  PubMed  Google Scholar 

  • Tovar-Sánchez E, Oyama K (2006a) Effect of hybridization of the Quercus crassifolia × Quercus crassipes species complex on the community structure of endophagous insects. Oecologia 147:702–713

    Article  PubMed  Google Scholar 

  • Tovar-Sánchez E, Oyama K (2006b) Community structure of canopy arthropods associated to Quercus crassifolia × Quercus crassipes species complex. Oikos 112:370–381

    Article  Google Scholar 

  • Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30

    Article  Google Scholar 

  • Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol Appl 12:354–363

    Google Scholar 

  • Turner IM (1996) Species loss in fragments of tropical rain forest: a review of the evidence. J Appl Ecol 33:200–209

    Article  Google Scholar 

  • Tyas JA, Horman PJ, Underhill SJR, Bell KL (1998) Fruit canopy position and panicle bagging affects yield and quality of “Tai So” lychee. Sci Horticult 72:203–213

    Article  Google Scholar 

  • Valencia-Ávalos S, Nixon KC (2004) Encinos. In: García-Mendoza AJ, Ordóñez MJ, Briones-Salas M (eds) Biodiversidad de Oaxaca. Instituto de Biología, UNAM-Fondo Oaxaqueño para la Conservación de la Naturaleza-World Wildlife Fund, México

    Google Scholar 

  • Veldtman R, McGeoch MA (2003) Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa. The importance of plant community composition. Austral Ecol 28:1–13

    Article  Google Scholar 

  • Weis AE, Walton R, Crego CL (1988) Reactive tissue sites and the population biology of gall makers. Annu Rev Entomol 33:467–486

    Article  Google Scholar 

  • Wiebes-Rijks AA, Shorthouse JD (1992) Ecological relationships of insects inhabiting cynipid galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 238–257

    Google Scholar 

  • Williams RJ, Myers A, Muller WJ, Duff GA, Eamus D (1997) Leaf phenology of woody species in a north Australian tropical savanna. Ecology 78:2542–2558

    Article  Google Scholar 

  • Williams-Linera G (1990) Vegetation structure and environmental conditions of forest edges in Panama. J Ecol 78:356–373

    Article  Google Scholar 

  • Wimp GM, Murphy SM, Lewis D, Ries L (2011) Do edge responses cascade up or down a multi-trophic food web? Ecol Lett 14:863–870

    Article  PubMed  Google Scholar 

  • Yaacobi G, Ziv Y, Rosenzweig ML (2007) Effects of interactive scale-dependent variables on beetle diversity patterns in a semi-arid agricultural landscape. Landsc Ecol 22:687–703

    Article  Google Scholar 

  • Yamasaki M, Kikuzawa K (2003) Temporal and spatial variations in leaf herbivory within a canopy of Fagus crenata. Oecologia 137:226–232

    Article  PubMed  Google Scholar 

  • Yukawa J (2000) Synchronization of gallers with host plant phenology. Popul Ecol 42:105–113

    Article  Google Scholar 

Download references

Acknowledgments

This paper constitutes a partial fulfillment of the Graduate Program in Biomedical Sciences of the Universidad Nacional Autónoma de México (UNAM) of Y. M.-L. Y. M.-L. received a Ph.D. scholarship from CONACyT (No. 165050). This project was supported by DGAPA-PAPIIT (UNAM) IN229803, IN208210, IN213113 to KO. CONACYT 38550-V, CONACYT 2007-80943, SEMARNAT-CONACYT 2004-C01-97 to KO, and CONACYT 2008-105755 to P. Cuevas-Reyes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurixhi Maldonado-López.

Additional information

Handling Editors: John F. Tooker and Heikki Hokkanen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maldonado-López, Y., Cuevas-Reyes, P. & Oyama, K. Diversity of gall wasps (Hymenoptera: Cynipidae) associated with oak trees (Fagaceae: Quercus) in a fragmented landscape in Mexico. Arthropod-Plant Interactions 10, 29–39 (2016). https://doi.org/10.1007/s11829-015-9404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-015-9404-x

Keywords

Navigation