Skip to main content
Log in

Specialization of pollination systems of two co-flowering phenotypically generalized Hypericum species (Hypericaceae) in Cameroon

Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The degree of specialization in plant–pollinator relationships is probably the most intensively discussed topic of pollination biology. Phenotypically generalized flowers are typically also considered to be generalized ecologically and/or functionally. Our study focuses on visitors to flowers of Hypericum roeperianum and H. revolutum, two closely related co-flowering Afromontane plants with flat flowers, which can be visited by many insects. We collected insect visitors and recorded their behaviour. Both Hypericum species were visited by large numbers of morphospecies and functional groups, which might indicate that they are highly generalized plants. Nevertheless, after including the visitors’ abundance, behaviour and contact with the plants’ reproductive organs, only a single carpenter bee species could be considered an effective pollinator of H. roeperianum, and a few smaller bee species (mainly Apis mellifera and Meliplebeia ogouensis) could be considered as effective pollinators of H. revolutum. Despite the fact that the flowers appear at first glance phenotypically generalized, both species seem to be ecologically and functionally specialized for bee pollination. Our results indicate that even phenotypically generalized flowers can be functionally and ecologically specialized. More precise knowledge of their visitors’ behaviour is crucial for understanding their pollination systems. Our results cast doubts upon the currently leading opinion that generalization prevails in pollination systems, as such conclusions are based mainly on community-wide studies, which usually do not consider the true role of insect visitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aizen MA, Morales CL, Morales JM (2008) Invasive mutualists erode native pollination webs. PLoS Biol 6:e31

    Article  PubMed Central  PubMed  Google Scholar 

  • Anderson DR (2008) Model based inference in the life sciences: a primer on evidence. Springer, New York

    Book  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Armbruster WS, Baldwin BG (1998) Switch from specialized to generalized pollination. Nature 394:632

    Article  CAS  Google Scholar 

  • Bartoš M, Janeček Š (2014) Pollinator-induced twisting of flowers sidesteps floral architecture constraints. Curr Biol 24:R793–R795

    Article  PubMed  Google Scholar 

  • Bartoš M, Janeček Š, Padyšáková E, Patáčová E, Altman J, Pešata M, Kantorová J, Tropek R (2012) Nectar properties of the sunbird-pollinated plant Impatiens sakeriana: a comparison with six other co-flowering species. S Afr J Bot 78:63–74

    Article  Google Scholar 

  • Briscoe A, Chittka L (2001) Evolution of color vision in insects. Annu Rev Entomol 46:471–510

    Article  CAS  PubMed  Google Scholar 

  • Castro S, Loureiro J, Ferrero V, Silveira P, Navarro L (2013) So many visitors and so few pollinators: variation in insect frequency and effectiveness governs the reproductive success of an endemic milkwort. Plant Ecol 214:1233–1245

    Article  Google Scholar 

  • Cheek M, Onana JM, Pollard BJ (2000) The plants of Mount Oku and the Ijlm Ridge, Cameroon, a conservation checklist. Royal Botanic Gardens, Kew

    Google Scholar 

  • Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361–377

    Article  CAS  Google Scholar 

  • Clivati D, Cordeiro GD, Płachno BJ, Miranda VFO (2014) Reproductive biology and pollination of Utricularia reniformis A. St.-Hil. (Lentibulariaceae). Plant Biol 16:677–682

    Article  CAS  PubMed  Google Scholar 

  • Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s guide and application. http://purl.oclc.org/estimates

  • Dafni A, Eisikowitch D, Ivri Y (1987) Nectar flow and pollinators’ efficiency in two co-occurring species of Capparis (Capparaceae) in Israel. Plant Syst Evol 157:181–186

    Article  Google Scholar 

  • Dafni A, Bernhardt P, Shmida A, Ivri BY, Greenbaum S, O’Toole C, Losito L (1990) Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. Isr J Bot 39:81–92

    Google Scholar 

  • Dafni A, Kevan PG, Husband BC (2005) Practical pollination ecology. Enviroquest, Cambridge

    Google Scholar 

  • Dicks LV, Corbet SA, Pywell RF (2002) Compartmentalization in plant–insect flower visitor webs. J Anim Ecol 71:32–43

    Article  Google Scholar 

  • Dupont YL, Hansen DM, Olesen JM (2003) Structure of a plant–flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography 26:301–310

    Article  Google Scholar 

  • Dupont YL, Padrón B, Olesen JM, Petanidou T (2009) Spatio-temporal variation in the structure of pollination networks. Oikos 118:1261–1269

    Article  Google Scholar 

  • Eisner T, Eisner M, Aneshansley D (1973) Ultraviolet patterns on rear of flowers: basis of disparity of buds and blossoms. Proc Natl Acad Sci USA 70:1002–1004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Forup ML, Memmott J (2005) The restoration of plant–pollinator interactions in hay meadows. Restor Ecol 13:265–274

    Article  Google Scholar 

  • Friis EM, Crane PR, Pedersen KR (2011) Early flowers and angiosperm evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Goldblatt P, Bernhardt P, Manning JC (1998) Pollination of petaloid geophytes by monkey beetles (Scarabaeidae: Rutelinae: Hopliini) in southern Africa. Ann Mo Bot Gard 85:215–230

    Article  Google Scholar 

  • Gottsberger G (1989) Beetle pollination and flowering rhythm of Annona spp. (Annonaceae) in Brazil. Plant Syst Evol 167:165–187

    Article  Google Scholar 

  • Gottsberger G (1999) Pollination and evolution in neotropical Annonaceae. Plant Species Biol 14:143–152

    Article  Google Scholar 

  • Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596

    Article  PubMed  Google Scholar 

  • Gronquist M, Bezzerides A, Attygalle A, Meinwald J, Eisner M, Eisner T (2001) Attractive and defensive functions of the ultraviolet pigments of a flower (Hypericum calycinum). Proc Natl Acad Sci USA 98:13745–13750

  • Herrera CM (1988) Variation in mutualisms: the spatiotemporal mosaic of a pollinator assemblage. Biol J Linn Soc 35:95–125

    Article  Google Scholar 

  • Inouye DW (1980) The terminology of floral lacerny. Ecology 61:1251–1253

    Article  Google Scholar 

  • Inouye DW, Gill DE, Dudash MR, Fenster CB (1994) A model and lexicon for pollen fate. Am J Bot 81:1517–1530

    Article  Google Scholar 

  • Janeček Š, Hrázský Z, Bartoš M, Brom J, Reif J, Hořák D, Bystřická D, Riegert J, Sedláček O, Pešata M (2007) Importance of big pollinators for the reproduction of two Hypericum species in Cameroon, West Africa. Afr J Ecol 45:607–613

    Article  Google Scholar 

  • Janeček Š, Patáčová E, Bartoš M, Padyšáková E, Spitzer L, Tropek R (2011) Hovering sunbirds in the Old World: occasional behaviour or evolutionary trend? Oikos 120:178–183

    Article  Google Scholar 

  • Janeček Š, Riegert J, Sedláček O, Bartoš M, Hořák D, Reif J, Padyšáková E, Fainová D, Antczak M, Pešata M, Mikeš V, Patáčová E, Altman J, Kantorová J, Hrázský Z, Brom J, Doležal J (2012) Food selection by avian floral visitors: an important aspect of plant–flower visitor interactions in West Africa. Biol J Linn Soc 107:355–367

    Article  Google Scholar 

  • Johnson SD, Dafni A (1998) Response of bee-flies to the shape and pattern of model flowers: implications for floral evolution in a Mediterranean herb. Funct Ecol 12:289–297

    Article  Google Scholar 

  • Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. Trends Ecol Evol 15:140–143

    Article  PubMed  Google Scholar 

  • Jürgens A, Webber AC, Gottsberger G (2000) Floral scent compounds of Amazonian Annonaceae species pollinated by small beetles and thrips. Phytochemistry 55:551–558

    Article  PubMed  Google Scholar 

  • King C, Ballantyne G, Willmer PG (2013) Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol Evol 4:811–818

    Article  Google Scholar 

  • Lindsey AH (1984) Reproductive biology of Apiacea. I. Floral vistors to Thaspium and Zizia and their importance in pollination. Am J Bot 71:375–387

    Article  Google Scholar 

  • McIntosh ME (2005) Pollination of two species of Ferocactus: interactions between cactus-specialist bees and their host plants. Funct Ecol 19:727–734

    Article  Google Scholar 

  • Meseguer AS, Aldasoro JJ, Sanmartín I (2013) Bayesian inference of phylogeny, morphology and range evolution reveals a complex evolutionary history in St John’s wort (Hypericum). Mol Phylogenet Evol 67:379–403

    Article  PubMed  Google Scholar 

  • Neuschulz EL, Grass I, Botzat A, Johnson SD, Farwig N (2013) Persistence of flower visitors and pollination services of a generalist tree in modified forests. Austral Ecol 38:374–382

    Article  Google Scholar 

  • Newman E, Manning J, Anderson B (2014) Matching floral and pollinator traits through guild convergence and pollinator ecotype formation. Ann Bot 113:373–384

    Article  PubMed Central  PubMed  Google Scholar 

  • Olesen JM, Jordano P (2002) Geographic patterns in plant–pollinator mutualistic networks. Ecology 83:2416–2424

    Google Scholar 

  • Oliveira PEAM, Sazima M (1990) Pollination biology of two species of Kielmeyera (Guttiferae) from Brazilian cerrado vegetation. Plant Syst Evol 172:35–49

    Article  Google Scholar 

  • Oliveira PE, Gibbs PE, Barbosa AA, Talavera S (1992) Contrasting breeding systems in two Eriotheca (Bombacaceae) species of the Brazilian cerrados. Plant Syst Evol 179:207–219

    Article  Google Scholar 

  • Ollerton J, Johnson SD, Cranmer L, Kellie S (2003) The pollination ecology of an assemblage of grassland asclepiads in South Africa. Ann Bot 92:807–834

    Article  PubMed Central  PubMed  Google Scholar 

  • Ollerton J, Killick A, Lamborn E, Watts S, Whiston M (2007) Multiple meanings and modes: on the many ways to be a generalist flower. Taxon 56:717–728

    Article  Google Scholar 

  • Padyšáková E, Bartoš M, Tropek R, Janeček Š (2013) Generalization versus specialization in pollination systems: visitors, thieves, and pollinators of Hypoestes aristata (Acanthaceae). PLoS One 8:e59299

    Article  PubMed Central  PubMed  Google Scholar 

  • Pasquet RS, Peltier A, Hufford MB, Oudin E, Saulnier J, Paul L, Knudsen JT, Herren HR, Gepts P (2008) Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc Natl Acad Sci USA 105:13456–13461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Price MV, Waser NM, Irwin RE, Campbell DR, Brody AK (2005) Temporal and spatial variation in pollination of a montane herb: a seven-year study. Ecology 86:2106–2116

    Article  Google Scholar 

  • Proenca CEM (1992) Buzz pollination—older and more widespread than we think? J Trop Ecol 8:115–120

    Article  Google Scholar 

  • Raju AJS, Rao SP (2006) Nesting habits, floral resources and foraging ecology of large carpenter bees (Xylocopa latipes and Xylocopa pubescens) in India. Curr Sci 90:1210–1217

    Google Scholar 

  • Robson NKB (1961) Guttiferae. In: Exell AW, Wild H (eds) Flora Zambesiaca. Kew Publishing and Flora Zambesiaca Managing Committee, London

    Google Scholar 

  • Sabatino M, Maceira N, Aizen MA (2010) Direct effects of habitat area on interaction diversity in pollination webs. Ecol Appl 20:1491–1497

    Article  PubMed  Google Scholar 

  • StatSoft I (2011) STATISTICA, ver. 10. www.statsoft.com

  • Wang Q, Li Y, Pu X, Zhu L, Tang Z, Liu Q (2013) Pollinators and nectar robbers cause directional selection for large spur circle in Impatiens oxyanthera (Balsaminaceae). Plant Syst Evol 299:1263–1274

    Article  CAS  Google Scholar 

  • Waser NM, Ollerton J (2006) Plant–pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago

    Google Scholar 

  • Weberling F (2007) The problem of generalized flowers: morphological aspects. Taxon 56:707–716

    Article  Google Scholar 

  • Williams G, Adam P (2001) The insect assemblage visiting the flowers of the subtropical rainforest pioneer tree Alphitonia excelsa (Fenzl) Reiss. ex Benth. (Rhamnaceae). Proc Linn Soc NSW 123:235–259

    Google Scholar 

  • Willmer P (2011) Pollination and floral ecology. Princeton University Press, Oxford

    Book  Google Scholar 

  • Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143:669–676

    Article  Google Scholar 

  • Zych M (2007) On flower visitors and true pollinators: the case of protandrous Heracleum sphondylium L. (Apiaceae). Plant Syst Evol 263:159–179

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Kedjom-Keku community and particularly Ernest Vunan Amohlon from the SATEC NGO for their kind reception in the Big Babanki village and F. Rooks for English proofreading. The research was supported by the University of South Bohemia (136/2010/P, 168/2013/P), the Ministry of Culture of the Czech Republic (DKRVO 2013/12, National Museum, 00023272), the Czech Science Foundation (14-36098G) and the Institutional Research Support Grant No. SVV 260 087/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bartoš.

Additional information

Handling Editor: Katja Hogendoorn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Checklist of insect visitors on Hypericum sp. (PDF 15 kb)

Online Resource 2

Rarefaction curves and extrapolation of rarefaction (PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartoš, M., Tropek, R., Spitzer, L. et al. Specialization of pollination systems of two co-flowering phenotypically generalized Hypericum species (Hypericaceae) in Cameroon. Arthropod-Plant Interactions 9, 241–252 (2015). https://doi.org/10.1007/s11829-015-9378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-015-9378-8

Keywords

Navigation