Skip to main content
Log in

Physiological responses of resistant and susceptible reproductive stage soybean to soybean aphid (Aphis glycines Matsumura) feeding

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

We examined the physiological responses of four soybean genotypes (KS4202, K-1639-2, ‘Jackson,’ ‘Asgrow 2703’) to soybean aphid (Aphis glycines Matsumura) feeding in reproductive stage soybeans (R1, beginning bloom). Photosynthetic capacity was evaluated by taking survey measurements at 7, 17, 24, and 28 days after aphid introduction and by measuring assimilation/internal CO2 (ACi) curves at 29 days after aphid introduction. There were no significant differences in survey measurements between the control and infested KS4202, K-1639-2, Jackson, and Asgrow 2703 plants at 7, 17, 24, and 28 days after aphid introduction. At 29 days after aphid introduction, Asgrow 2703 plants showed a significant reduction in photosynthetic capacity compared to its control plants, while infested KS4202 plants had photosynthetic rates similar to control plants, suggesting the plant’s ability to compensate for aphid feeding. Differences in gas-exchange parameters, specifically Jmax and CE, between control and infested Asgrow 2703 plants showed that soybean aphid feeding negatively impacts the carbon-linked/dark reactions, specifically rubisco activity and RuBP regeneration. This research also investigated the role of peroxidases in the defense response of soybeans to the soybean aphid. Enzyme kinetics studies documented the up-regulation of peroxidase activity for both Asgrow 2703 and KS4202 aphid-infested plants compared to their respective uninfested control plants at 24 and 28 days after aphid introduction. Peroxidase expression profiles identified differences in the isozyme profiles of aphid-infested and control plants for Asgrow 2703 and KS4202. Differences between physiological responses of infested KS4202 and Asgrow 2703, particularly temporal changes in photosynthesis activity, imply that KS4202 tolerates some impacts of soybean aphid feeding on photosynthetic integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alleman RJ, Grau CR, Hogg DB (2002) Soybean aphid host range and virus transmission efficiency. In: Proceedings of the Wisconsin fertilizer Agline pest management conference http://www.soils.wisc.edu/extension/FAPM/2002proceedings/Alleman-Conf-2002.pdf. Accessed 31 July 2009

  • Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 19:1521–1553

    Article  CAS  Google Scholar 

  • Beckendorf EA, Catangui MA, Riedell WE (2008) Soybean aphid feeding injury and soybean yield, yield components, and seed composition. Agron J 100:237–246

    Article  Google Scholar 

  • Bi JL, Felton GW (1995) Foliar oxidative stress and insect herbivory: primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J Chem Ecol 21:1511–1530

    Article  CAS  Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the world’s crops: an identification and information guide, 2nd edn. Wiley, New York

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brosius TR, Higley LG, Hunt TE (2007) Population dynamics of soybean aphid and biotic mortality at the edge of its range. J Econ Entomol 100:1268–1275

    Article  PubMed  Google Scholar 

  • Burd JD, Elliott NC (1996) Changes in chlorophyll a fluorescence induction kinetics in cereals infested with Russian wheat aphid. J Econ Entomol 89:1332–1337

    Google Scholar 

  • Dangl JL, Dietrich RA, Thomas H (2000) Senescence and programmed cell death. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. Am Soc Plant Physiol, Rockville, MD

    Google Scholar 

  • Diaz-Montano J, Reese JC, Schapaugh WT, Campbell LR (2006) Characterization of antibiosis and antixenosis to the soybean aphid (Hemiptera: Aphididae) in several soybean genotypes. J Econ Entomol 99:1884–1889

    Article  PubMed  Google Scholar 

  • Diaz-Montano J, Reese JC, Louis J, Campbell LR, Schapaugh WT (2007a) Feeding behavior by the soybean aphid (Hemiptera: Aphididae) on resistant and susceptible soybean enotypes. J Econ Entomol 100:984–989

    Article  PubMed  Google Scholar 

  • Diaz-Montano J, Reese JC, Schapaugh WT, Campbell LR (2007b) Chlorophyll loss caused by soybean aphid (Hemiptera: Aphididae) feeding on soybean. J Econ Entomol 100:1657–1662

    Article  CAS  PubMed  Google Scholar 

  • Dowd PF, Lagrimini LM (1997) The role of peroxidase in host insect defense. In: Carozzi N, Koziel M (eds) Advances in insect control. Taylor and Francis, Ltd, London

    Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Ann Rev Plant Phys 33:317–345

    Article  CAS  Google Scholar 

  • Fehr WR, Caviness CE (1977) Stages of soybean. Iowa State University Cooperatives Extension Service Special Report 80. Iowa State University, Ames, IA

    Google Scholar 

  • Felton GW, Summers CB, Mueller AJ (1994) Oxidative responses in soybean foliage to herbivory by bean leaf beetle and three-cornered alfalfa leafhopper. J Chem Ecol 20:639–650

    Article  CAS  Google Scholar 

  • Ferris R, Wheeler TR, Hadley P, Ellis RH (1998) Recovery of photosynthesis after environmental stress in soybean grown under elevated CO2. Crop Sci 38:948–955

    Article  Google Scholar 

  • Franzen LD, Gutsche AR, Heng-Moss TM, Higley LG, Sarath G, Burd JD (2007) Physiological and biochemical responses of resistant and susceptible wheat to injury by Russian wheat aphid. J Econ Entomol 100:1692–1703

    Article  CAS  PubMed  Google Scholar 

  • Haile FJ, Higley LG, Ni X, Quisenberry SS (1999) Physiological and growth tolerance in wheat to Russian wheat aphid (Homoptera: Aphididae) injury. Environ Entomol 28:787–794

    Google Scholar 

  • Hartman GL, Domier LL, Wax LM, Helm CG, Onstad DW, Shaw JT, Solter LF, Voegtlin DJ, D’Arcy CJ, Gray ME, Steffey KL, Isard SA, Orwick PL (2001) Occurrence and distribution of Aphis glycines on soybeans in Illinois in 2000 and its potential control. In: Plant health progress, Plant management network international. http://www.plantmanagementnetwork.org/pub/php/brief/aphisglycines/. Accessed 31 July 2009

  • Heng-Moss TM, Baxendale FP, Riordan TP, Foster JE (2002) Evaluation of buffalograss germplasm for resistance to Blissus occiduus (Hemiptera: Lygaeidae). J Econ Entomol 95:1054–1058

    Article  PubMed  Google Scholar 

  • Heng-Moss TM, Sarath G, Baxendale FP, Novak D, Bose S, Ni X, Quisenberry S (2004) Characterization of oxidative enzyme changes in buffalograsses challenged by B. occiduus. J Econ Entomol 97:1086–1095

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand DF, Rodriguez JG, Brown GC, Luu KT, Volden CS (1986) Peroxidative responses of leaves in two soybean genotypes injured by twospotted spider mites (Acari: Tetranychidae). J Econ Entomol 79:1459–1465

    Google Scholar 

  • Hill CB, Li Y, Hartman GL (2004) Resistance to the soybean aphid in soybean germplasm. Crop Sci 44:98–106

    Article  Google Scholar 

  • Hill CB, Li Y, Hartman GL (2006a) A single dominant gene for resistance to the soybean aphid in the soybean cultivar Dowling. Crop Sci 46:1601–1605

    Article  Google Scholar 

  • Hill CB, Li Y, Hartman GL (2006b) Soybean aphid resistance in soybean Jackson is controlled by a single dominant gene. Crop Sci 46:1606–1608

    Article  CAS  Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 45:462–468

    Article  Google Scholar 

  • Hori K, Wada A, Shibuta T (1997) Changes in phenoloxidase activities of the galls on leaves of Ulmus davidana formed by Tetraneura fusiformis (Homoptera: Eriosomatidae). Appl Entomol Zool 32:365–371

    CAS  Google Scholar 

  • Huber SC, Rogers HH, Mowry FL (1984) Effects of water stress on photosynthesis and carbon partitioning in soybean (Glycine max (L.) Merr.) plants grown in the field at different CO2 levels. Plant Physiol 76:244–249

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute (2002) PROC user’s manual, version 9.1. SAS Institute, Cary

    Google Scholar 

  • Jablonski PP, Anderson JW (1984) Role of a flavonoid in the peroxide-dependent oxidation of glutathione catalysed by pea extracts. Phytochemistry 23:1865–1869

    Article  CAS  Google Scholar 

  • Kang ST, Mian MAR, Hammond RB (2008) Soybean aphid resistance in PI 243540 is controlled by a single dominant gene. Crop Sci 48:1744–1748

    Article  CAS  Google Scholar 

  • Kawano T (2003) Roles of reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature (Lond.) 227:680–685

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant Physiological Ecology. Springer New York, Inc, New York, NY

    Google Scholar 

  • Leitner M, Boland W, Mithöfer A (2005) Direct and indirect defenses induced by piercing sucking and chewing herbivores in Medicago truncatula. New Phytol 167:597–606

    Article  CAS  PubMed  Google Scholar 

  • Macedo TB, Bastos CS, Higley LG, Ostlie KR, Madhavan S (2003) Photosynthetic responses of soybean to soybean aphid injury. J Econ Entomol 96:188–193

    Article  CAS  PubMed  Google Scholar 

  • Macedo TB, Peterson RKD, Weaver DK, Ni X (2009) Impact of Diuraphis noxia and Rhopalosiphum padi (Hemiptera: Aphididae) on primary physiology of four near-isogenic wheat lines. J Econ Entomol 102:412–421

    Article  PubMed  Google Scholar 

  • Manter DK, Kerrigan J (2004) A/Ci analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. J Exp Bot 55:2581–2588

    Article  CAS  PubMed  Google Scholar 

  • Mian MAR, Hammond RB, St. Martin SK (2008) New plant introductions with resistance to the soybean aphid. Crop Sci 48:1055–1061

    Article  Google Scholar 

  • Miller H, Porter DR, Burd JD, Mornhinweg DW, Burton RL (1994) Physiological effects of Russian wheat aphid (Homoptera: Aphididae) on resistant and susceptible barley. J Econ Entomol 87:493–499

    Google Scholar 

  • Myers SW, Gratton C, Wolkowski RP, Hogg DB, Wedberg JL (2005) Effect of soil potassium availability on soybean aphid (Hemiptera: Aphididae) population dynamics and soybean yield. J Econ Entomol 98:113–120

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Ni X, Quisenberry SS, Heng-Moss TM, Markwell J, Sarath G, Klucas R, Baxendale FP (2001) Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera: Aphididae) feeding. J Econ Entomol 94:743–751

    Article  CAS  PubMed  Google Scholar 

  • Ostlie K (2002) Managing soybean aphid. In: University of Minnesota Extension Service. http://www.soybeans.umn.edu/crop/insects/aphid/aphid_publication_managingsba.htm. Accessed 31 July 2009

  • Peña-Rojas K, Aranda X, Fleck I (2004) Stomatal limitation to CO2 assimilation and down regulation of photosynthesis in Quercus liex resprouts in response to slowly imposed drought. Tree Physiol 24:813–822

    PubMed  Google Scholar 

  • Peterson RKD, Higley LG (1993) Arthropod injury and plant gas exchange: current understandings and approaches for synthesis. Trends Agric Sci Entomol 1:93–100

    CAS  Google Scholar 

  • Pierson LM, Heng-Moss TM, Hunt TE, Reese JC (2010) Categorizing the resistance of soybean genotypes to the soybean aphid (Hemiptera: Aphididae). J Econ Entomol 103:1405–1411

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale DW, Voegtlin DJ, O’Neil RJ (2004) Soybean aphid biology in North America. Ann Entomol Soc Am 97:204–208

    Google Scholar 

  • Ragsdale DW, McCornack BP, Venette RC, Potter BD, MacRae IV, Hodgson EW, O’Neal ME, Johnson KD, O’Neil RJ, DiFonzo CD, Hunt TE, Glogoza PA, Cullen EM (2007) Economic threshold for soybean aphid (Hemiptera: Aphididae). J Econ Entomol 100:1258–1267

    Article  CAS  PubMed  Google Scholar 

  • Ryan JD, Johnson RC, Eikenbary RD, Dorschner K (1987) Drought/greenbug interactions: photosynthesis of greenbug resistant and susceptible wheat. Crop Sci 27:283–288

    Google Scholar 

  • Riedell WE (1989) Effects of Russian aphid infestation on barley plant response to drought stress. Physiol Plant 77:587–592

    Article  CAS  Google Scholar 

  • Rutledge CE, O’Neil RJ (2005) Orius insidiosus (Say) as a predator of the soybean aphid, Aphis glycines Matsumura. Biol Control 33:56–64

    Article  Google Scholar 

  • Smith CM (2005) Plant resistance to arthropods. Springer, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Strauss AJ, Krüger GH, Strasser RJ, van Heerden PD (2007) The role of low soil temperature in the inhibition of growth and PSII function during dark chilling in soybean genotypes of contrasting tolerance. Physiol Plant 131:89–105

    Article  CAS  PubMed  Google Scholar 

  • Vallejos CE (1983) Enzyme activity staining. In: Tanksley SD, Orton TJ (eds) Isozyme in plant genetic and breeding, part A. Elsevier, Amsterdam

    Google Scholar 

  • Venette RC, Ragsdale DW (2004) Assessing the invasion by soybean aphid (Homoptera: Aphididae): where will it end? Ann Entomol Soc Am 97:219–226

    Article  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Wang YZ, Ba F (1998) Study on optimum control of the soybean aphid. Acta Phyt Sinica 25:152–155

    Google Scholar 

  • Wang YZ, Ma L, Wang JZ, Ren XZ, Zhu WL (2000) Systematic optimum control of diseases and inset pests in summer soybean. J Ecol 20:502–509

    Google Scholar 

  • Wu Z, Schenk-Hamlin D, Zhan W, Ragsdale DW, Heimpel GE (2004) The soybean aphid in China: a historical review. Ann Entomol Soc Am 97:209–218

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Mitchell Stamm, Sandra Schaeffer, and Travis Prochaska for technical assistance. This research was supported in part by the North Central Soybean Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Heng-Moss.

Additional information

Handling Editor: Chen-Zhu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierson, L.M., Heng-Moss, T.M., Hunt, T.E. et al. Physiological responses of resistant and susceptible reproductive stage soybean to soybean aphid (Aphis glycines Matsumura) feeding. Arthropod-Plant Interactions 5, 49–58 (2011). https://doi.org/10.1007/s11829-010-9115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-010-9115-2

Keywords

Navigation