Skip to main content

Advertisement

Log in

Water availability alters the tri-trophic consequences of a plant-fungal symbiosis

  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Plant–microbe protection symbioses occur when a symbiont defends its host against enemies (e.g., insect herbivores); these interactions can have important influences on arthropod abundance and composition. Understanding factors that generate context-dependency in protection symbioses will improve predictions on when and where symbionts are most likely to affect the ecology and evolution of host species and their associated communities. Of particular relevance are changes in abiotic contexts that are projected to accompany global warming. For example, increased drought stress can enhance the benefits of fungal symbiosis in plants, which may have multi-trophic consequences for plant-associated arthropods. Here, we tracked colonization of fungal endophyte-symbiotic and aposymbiotic Poa autumnalis (autumn bluegrass) by Rhopalosiphum padi (bird-cherry-oat aphids) and their parasitoids (Aphelinus sp.) following manipulations of soil water levels. Endophyte symbiosis significantly reduced plant colonization by aphids. Under low water, symbiotic plants also supported a significantly higher proportion of aphids that were parasitized by Aphelinus and had higher above-ground biomass than aposymbiotic plants, but these endophyte-mediated effects disappeared under high water. Thus, the multi-trophic consequences of plant-endophyte symbiosis were contingent on the abiotic context, suggesting the potential for complex responses in the arthropod community under future climate shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afkhami ME, Rudgers JA (2009) Endophyte-mediated resistance to herbivores depends on herbivore identity in the wild grass Festuca subverticillata. Environ Entomol 38:1086–1095

    Article  PubMed  Google Scholar 

  • Arimura G, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923

    Article  CAS  PubMed  Google Scholar 

  • Bacon CW, White JF Jr (1994) Stains, media, and procedures for analyzing endophytes. In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, pp 47–56

    Google Scholar 

  • Barkworth ME, Capels KM, Long S, Anderton LK, Piep MB (eds) (2006) Flora of North America volume 24: North of Mexico: Magnoliophyta: Commelinidae (in part): Poaceae, part 1. Oxford University Press, New York, NY

    Google Scholar 

  • Bazely DR, Vicari M, Emmerich S, Filip L, Lin D, Inman A (1997) Interactions between herbivores and endophyte-infected Festuca rubra from the Scottish islands of St. Kilda, Benbecula and Rum. J App Ecol 34:847–860

    Article  Google Scholar 

  • Belesky DP, Stringer WC, Plattner RD (1989) Influence of endophyte and water regime upon tall fescue accessions. 2. Pyrrolizidine and ergopeptine alkaloids. Ann Bot 64:343–349

    CAS  Google Scholar 

  • Bieri APS, Härri SA, Vorburger C, Müller CB (2009) Aphid genotypes vary in their response to the presence of fungal endosymbionts in host plants. J Evol Biol 22:1775–1780

    Article  CAS  PubMed  Google Scholar 

  • Bronstein JL (1994) Conditional outcomes in mutualistic interactions. Trends Ecol Evol 9:214–217

    Article  CAS  PubMed  Google Scholar 

  • Bronstein JL (1998) The contribution of ant-plant protection studies to our understanding of mutualism. Biotropica 30:150–161

    Article  Google Scholar 

  • Bultman TL, Bell GD (2003) Interaction between fungal endophytes and environmental stressors influences plant resistance to insects. Oikos 103:182–190

    Article  Google Scholar 

  • Bultman TL, Borowicz KL, Schneble RM, Coudron TA, Bush LP (1997) Effect of a fungal endophyte on the growth and survival of two Euplectrus parasitoids. Oikos 78:170–176

    Article  Google Scholar 

  • Bush LP, Fannin FF, Siegel MR, Dahlman DL, Burton HR (1993) Chemistry, occurrence and biological effects of saturated pyrrolizidine alkaloids associated with endophyte grass interactions. Agric Ecosyst Environ 44:81–102

    Article  CAS  Google Scholar 

  • Carver M, Sullivan DJ, Niemczyk E, Dixon AFG (1988) Encapsulative defense reactions of aphids (Hemiptera: Aphididae) to insect parasitoids (Hymenoptera: Aphidiidae and Aphelinidae) (minireview). Ecology and effectiveness of aphidophaga. Proceedings of an international symposium, held at Teresin, Poland, August 31–September 5, 1987, pp 299–303

  • Carver M, Woolcock LT (1985) Interactions between Acrythosiphon kondoi (Homoptera, Aphidoidea) and Aphelinus asychis (Hymenoptera, Chalcidoidea) and other parasites and hosts. Entomophaga 30:193–198

    Article  Google Scholar 

  • Cassell DL (2002) A randomization-test wrapper for SAS PROCs. In: Inc SI (ed) Proceedings of the twenty-seventh annual SAS users group international conference. SAS Institute Inc., Cary

  • Chaneton EJ, Omacini M (2007) Bottom-up cascades induced by fungal endophytes in multitrophic systems. In: Ohgushi T, Craig TP, Price PW (eds) Ecological communities: plant mediation in indirect interaction webs, 1st edn. Cambridge University Press, Cambridge, pp 164–187

    Google Scholar 

  • Cheplick GP, Faeth SH (2009) Ecology and evolution of grass-endophyte symbiosis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:275–297

    Article  Google Scholar 

  • Clay K (1996) Interactions among fungal endophytes, grasses and herbivores. Res Popul Ecol 38:191–201

    Article  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Clay K, Holah J, Rudgers JA (2005) Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proc Natl Acad Sci USA 102:12465–12470

    Article  CAS  PubMed  Google Scholar 

  • Clement SL, Elberson LR, Bosque-Perez NA, Schotzko DJ (2005) Detrimental and neutral effects of wild barley—Neotyphodium fungal endophyte associations on insect survival. Entomol Exp Appl 114:119–125

    Article  Google Scholar 

  • Cohen JE, Jonsson T, Müller CB, Godfray HCJ, Savage VM (2005) Body sizes of hosts and parasitoids in individual feeding relationships. Proc Natl Acad Sci USA 102:684–689

    Article  CAS  PubMed  Google Scholar 

  • Crawford KM, Land JM, Rudgers JA (2010) Fungal endophytes of native grasses decrease insect herbivore preference and performance. Oecologia 164:431–444

    Article  PubMed  Google Scholar 

  • de Sassi C, Müller CB, Krauss J (2006) Fungal plant endosymbionts alter life history and reproductive success of aphid predators. Proc R Soc Lond B Biol Sci 273:1301–1306

    Article  Google Scholar 

  • Edgington ES (1987) Randomization tests, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Faeth SH, Bultman TL (2002) Endophytic fungi and interactions among host plants, herbivores, and natural enemies. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 89–123

    Google Scholar 

  • Finkes LK, Cady AB, Mulroy JC, Clay K, Rudgers JA (2006) Plant-fungus mutualism affects spider composition in successional fields. Ecol Lett 9:347–356

    Article  PubMed  Google Scholar 

  • Francke DL, Harmon JP, Harvey CT, Ives AR (2008) Pea aphid dropping behavior diminishes foraging efficiency of a predatory ladybeetle. Entomol Exp Appl 127:118–124

    Article  Google Scholar 

  • Gao F, Zhu SR, Sun YC, Du L, Parajulee M, Kang L, Ge F (2008) Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of Gossypium hirsutum, Aphis gossyppii, and Propylaea japonica. Environ Entomol 37:29–37

    Article  PubMed  Google Scholar 

  • Gonthier DJ, Sullivan TJ, Brown KL, Wurtzel B, Lawal R, VandenOever K, Buchan Z, Bultman TL (2008) Stroma-forming endophyte Epichloë glyceriae provides wound-inducible herbivore resistance to its grass host. Oikos 117:629–633

    Article  Google Scholar 

  • Gould FW (1975) The grasses of Texas. Texas A&M University Press, College Station, TX

    Google Scholar 

  • Gregory PJ, Johnson SN, Newton AC, Ingram JSI (2009) Integrating pests and pathogens into the climate change/food security debate. J Exp Bot 60:2827–2838

    Article  CAS  PubMed  Google Scholar 

  • Grewal SK, Grewal PS, Gaugler R (1995) Endophytes of fescue grasses enhance susceptibility of Popillia japonica larvae to an entomopathogenic nematode. Entomol Exp Appl 74:219–224

    Google Scholar 

  • Gundel PE, Batista WB, Texeira M, Martinez-Ghersa MA, Omacini M, Ghersa CM (2008) Neotyphodium endophyte infection frequency in annual grass populations: relative importance of mutualism and transmission efficiency. Proc R Soc Lond B Biol Sci 275:897–905

    Article  Google Scholar 

  • Haine ER (2008) Symbiont-mediated protection. Proc R Soc Lond B Biol Sci 275:353–361

    Article  Google Scholar 

  • Härri SA, Krauss J, Müller CB (2008a) Fungal endosymbionts of plants reduce lifespan of an aphid secondary parasitoid and influence host selection. Proc R Soc Lond B Biol Sci 275:2627–2632

    Article  Google Scholar 

  • Härri SA, Krauss J, Müller CB (2008b) Natural enemies act faster than endophytic fungi in population control of cereal aphids. J Anim Ecol 77:605–611

    Article  PubMed  Google Scholar 

  • Härri SA, Krauss J, Müller CB (2008c) Trophic cascades initiated by fungal plant endosymbionts impair reproductive performance of parasitoids in the second generation. Oecologia 157:399–407

    Article  PubMed  Google Scholar 

  • Härri SA, Krauss J, Müller CB (2009) Extended larval development time for aphid parasitoids in the presence of plant endosymbionts. Ecol Entomol 34:20–25

    Article  Google Scholar 

  • Hatano E, Kunert G, Michaud JP, Weisser WW (2008) Chemical cues mediating aphid location by natural enemies. Eur J Entomol 105:797–806

    CAS  Google Scholar 

  • Hoover JK, Newman JA (2004) Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids. Glob Chang Biol 10:1197–1208

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Summary for policy makers. Intergovernmental Panel on Climate Change Geneva, Switzerland, p 18

    Google Scholar 

  • Jallow MFA, Dugassa-Gobena D, Vidal S (2008) Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod-Plant Interactions 2:53–62

    Article  Google Scholar 

  • Kannadan S, Rudgers JA (2008) Endophyte symbiosis benefits a rare grass under low water availability. Funct Ecol 22:706–713

    Article  Google Scholar 

  • Lehtonen P, Helander M, Saikkonen K (2005) Are endophyte-mediated effects on herbivores conditional on soil nutrients? Oecologia 142:38–45

    Article  PubMed  Google Scholar 

  • Lewis GC, Ravel C, Naffaa W, Astier C, Charmet G (1997) Occurrence of Acremonium endophytes in wild populations of Lolium spp. in European countries and a relationship between level of infection and climate in France. Ann Appl Biol 130:227–238

    Article  Google Scholar 

  • Losey JE, Denno RF (1998) The escape response of pea aphids to foliar-foraging predators: factors affecting dropping behaviour. Ecol Entomol 23:53–61

    Article  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Manly BFJ (1991) Randomization and Monte Carlo methods in biology. Chapman and Hall, London

    Google Scholar 

  • Moon CD, Craven KD, Leuchtmann A, Clement SL, Schardl CL (2004) Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Mol Ecol 13:1455–1467

    Article  CAS  PubMed  Google Scholar 

  • Novas MV, Collantes M, Cabral D (2007) Environmental effects on grass-endophyte associations in the harsh conditions of south Patagonia. FEMS Microbiol Ecol 61:164–173

    Article  CAS  PubMed  Google Scholar 

  • Noyes J (1982) Collecting and preserving chalcid wasps (Hymenoptera: Chalcidoidea). J Nat Hist 16:315–334

    Article  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci USA 102:12795–12800

    Article  CAS  PubMed  Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM, Müller CB (2001) Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature 409:78–81

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Rudgers JA, Afkhami ME, Rua MA, Davitt AJ, Hammer S, Huguet VM (2009) A fungus among us: broad patterns of endophyte distribution in the grasses. Ecology 90:1531–1539

    Article  PubMed  Google Scholar 

  • Rudgers JA, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biol Rev 21:107–124

    Article  Google Scholar 

  • Rudgers JA, Clay K (2008) An invasive plant-fungal mutualism reduces arthropod diversity. Ecol Lett 11:831–840

    Article  PubMed  Google Scholar 

  • Rudgers JA, Swafford AL (2009) Benefits of a fungal endophyte in Elymus virginicus decline under drought stress. Basic Appl Ecol 10:43–51

    Article  Google Scholar 

  • Rudgers JA, Davitt AJ, Clay K, Gundel P, Omacini M (2010) Searching for evidence against the mutualistic nature of hereditary symbiosis: a comment on Faeth (2009). American Naturalist (in press)

  • Sachs JL, Mueller UG, Wilcox TP, Bull JJ (2004) The evolution of cooperation. Q Rev Biol 79:135–160

    Article  PubMed  Google Scholar 

  • Saona NM, Albrectsen BR, Ericson L, Bazely DR (2010) Environmental stresses mediate endophyte-grass interactions in a boreal archipelago. J Ecol 98:470–479

    Article  Google Scholar 

  • Schardl CL, Grossman RB, Nagabhyru P, Faulkner JR, Mallik UP (2007) Loline alkaloids: currencies of mutualism. Phytochemistry 68:980–996

    Article  CAS  PubMed  Google Scholar 

  • Siegel MR, Latch GCM, Bush LP, Fannin FF, Rowan DD, Tapper BA, Bacon CW, Johnson MC (1990) Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. J Chem Ecol 16:3301–3316

    Article  CAS  Google Scholar 

  • Villagra CA, Ramirez CC, Niemeyer HM (2002) Antipredator responses of aphids to parasitoids change as a function of aphid physiological state. Anim Behav 64:677–683

    Article  Google Scholar 

  • White JF Jr, Torres MS (eds) (2009) Defensive mutualism in microbial symbiosis. CRC Press, Boca Raton, FL

    Google Scholar 

  • Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol Plant Microbe Interact 13:1027–1033

    Article  CAS  PubMed  Google Scholar 

  • Yue Q, Wang CL, Gianfagna TJ, Meyer WA (2001) Volatile compounds of endophyte-free and infected tall fescue (Festuca arundinacea Schreb.). Phytochemistry 58:935–941

    Article  CAS  PubMed  Google Scholar 

  • Züst T, Härri SA, Müller CB (2008) Endophytic fungi decrease available resources for the aphid Rhopalosiphum padi and impair their ability to induce defenses against predators. Ecol Entomol 33:80–85

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Godwin Assistant Professorship and NSF-DEB#054278 to J.A.R. and by the Rice Century Scholars Fund to K.M.Y. We would like to thank Alex Gorischek, Liz Seifert, and Sami Hammer for assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelsey M. Yule.

Additional information

Handling editor: Robert Glinwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yule, K.M., Woolley, J.B. & Rudgers, J.A. Water availability alters the tri-trophic consequences of a plant-fungal symbiosis. Arthropod-Plant Interactions 5, 19–27 (2011). https://doi.org/10.1007/s11829-010-9112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-010-9112-5

Keywords

Navigation