Skip to main content
Log in

Individual stability of sleep spindle characteristics in healthy young males

Individuelle Stabilität von Schlafspindelparametern bei gesunden jungen Männern

  • Schwerpunkt
  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Abstract

Objective

The purpose of the present analysis was to quantify the magnitude of intersubject and intrasubject variation of sleep spindle characteristics in a sample of healthy young males.

Materials and methods

A total of 32 volunteers (age range 20–30 years) participated in a crossover study aimed at investigating possible effects of Terrestrial Trunked Radio (TETRA) signals on cognitive performance and human brain activity during sleep and waking. Sleep was polysomnographically assessed on nine identically organized study nights per individual. The inter- and intraindividual variability of automatically detected stage 2 non-rapid eye movement (NREM) sleep spindle (11–16 Hz) characteristics (number, density, duration, frequency, amplitude) derived from C3-A2 was determined. Stability of individual differences and the underlying variations were quantified using intraclass correlation (ICC) and coefficients of variation (CV), respectively. Note that there was no significant exposure effect on the considered sleep spindle characteristics.

Results

All sleep spindle variables showed an ICC coefficient higher than 0.8, indicating almost perfect stability of interindividual differences. Interindividual variability differed strongly between the considered spindle parameters (CV range: 2–53 %). Intraindividual variability was for all parameters less pronounced (mean CV range: 1–24 %), but their ratios underline the high degree of individuality of each of the investigated parameters.

Conclusion

The present analysis confirms the strong individual night-to-night stability of sleep spindle characteristics reported by previous studies. The results provide further evidence for treating sleep spindles as a possible trait, an issue which should be considered in studies relying on a parallel-group design. These data can also be used as reference values.

Zusammenfassung

Zielsetzung

Ziel dieser Studie war es, das inter- und intraindividuelle Ausmaß der Variation von Schlafspindelparametern anhand einer Gruppe gesunder, junger Männer zu bestimmen.

Material und Methoden

32 Versuchspersonen (Altersspanne: 20–30 Jahre) nahmen an einer Cross-over-Studie teil, in der untersucht wurde, ob elektromagnetische Felder des Behördenfunks TETRA (Terrestrial Trunked Radio) einen Einfluss auf kognitive Leistungen sowie auf die Gehirnaktivität im Wachzustand und im Schlaf haben. Von jedem Teilnehmer wurde der Schlaf in neun identisch organisierten Nachtschlafuntersuchungen polysomnographisch erfasst. Anschließend wurde die inter- und intraindividuelle Variabilität von automatisch detektierten Schlafspindelparametern (Anzahl, Dichte, Dauer, Frequenz, Amplitude) für die Elektrodenposition C3-A2 bestimmt. Die Stabilität individueller Unterschiede wurde mittels Intraklassen-Korrelation (ICC) berechnet und für die Quantifizierung der zugrunde liegenden Varianzen wurden Variationskoeffizienten (CV) verwendet. Die Exposition hatte keinen signifikanten Einfluss auf die hier berücksichtigten Schlafspindelparameter.

Ergebnisse

Die ICC-Koeffizienten ergaben für alle fünf untersuchten Schlafspindelparameter einen Wert größer 0,8, was einer fast perfekten Stabilität in den individuellen Unterschieden entspricht. Das Ausmaß der interindividuellen Variabilität zwischen den einzelnen Schlafspindelparametern wies große Unterschiede auf (CV-Spanne: 2–53 %). Die intraindividuelle Variabilität war bei allen Schlafspindelparametern geringer ausgeprägt (mittlere CV-Spanne: 1–24 %), das Verhältnis der Variabilitäten unterstreicht allerdings die hohe Individualität der untersuchten Parameter.

Schlussfolgerungen

Die hier präsentierten Ergebnisse bestätigen die Beobachtungen aus früheren Studien, in denen eine deutliche Nacht-zu-Nacht-Stabilität von Schlafspindelparametern gezeigt werden konnte. Die Ergebnisse liefern dementsprechend weitere Hinweise dafür, Schlafspindeln als mögliches „Trait“-Merkmal anzusehen, was in Studien, die einem Parallelgruppendesign folgen, berücksichtigt werden sollte. Zusätzlich können diese Daten auch als Normwerte herangezogen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Anderer P, Moreau A, Woertz M et al (2010) Computer-assisted sleep classification according to the standard of the American Academy of Sleep Medicine: validation study of the AASM version of the Somnolyzer 24 × 7. Neuropsychobiology 62:250–264

    Article  PubMed  Google Scholar 

  2. Anderer P, Saletu B, Saletu-Zyhlarz G et al (2006) Electrophysiological evaluation of sleep. In: Kinoshita T (ed) Textbook for the training course of the International Pharmaco-EEG Society, September 7&8, 2006, in the Awaji Island of Hyogo Prefecture. pp 107–129

  3. Azumi K, Shirakawa S (1982) Characteristics of spindle activity and their use in evaluation of hypnotics. Sleep 5:95–105

    CAS  PubMed  Google Scholar 

  4. Buysse DJ, Reynolds CF, Monk TH et al (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28:193–213

    Article  CAS  PubMed  Google Scholar 

  5. Chokroverty S (2009) An overview of normal sleep. In: Chokroverty S (ed) Sleep disorders medicine: basic science, technical considerations, and clinical aspects. Saunders/Elsevier, Philadelphia

  6. Danker-Hopfe H, Dorn H, Sauter C et al (2014) Probandenstudie zur Untersuchung des Einflusses der für TETRA genutzten Signalcharakteristik auf kognitive Funktionen—Vorhaben FM8846. https://doris.bfs.de/jspui/bitstream/urn:nbn:de:0221-2014090311644/3/BfS_2014_FM8846.pdf. Accessed 11 Mar 2014 (Report in German)

  7. De Gennaro L, Ferrara M (2003) Sleep spindles: an overview. Sleep Med Rev 7:423–440

    Article  Google Scholar 

  8. De Gennaro L, Ferrara M, Vecchio F et al (2005) An electroencephalographic fingerprint of human sleep. Neuroimage 26:114–122

    Article  Google Scholar 

  9. De Gennaro L, Marzano C, Fratello F et al (2008) The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Ann Neurol 64:455–460

    Article  Google Scholar 

  10. Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11:114–126

    Article  CAS  PubMed  Google Scholar 

  11. Fogel SM, Smith CT (2006) Learning-dependent changes in sleep spindles and Stage 2 sleep. J Sleep Res 15:250–255

    Article  PubMed  Google Scholar 

  12. Gaillard JM, Blois R (1981) Spindle density in sleep of normal subjects. Sleep 4:385–391

    CAS  PubMed  Google Scholar 

  13. Gais S, Molle M, Helms K et al (2002) Learning-dependent increases in sleep spindle density. J Neurosci 22:6830–6834

    CAS  PubMed  Google Scholar 

  14. Horne JA, Östberg O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4:97–110

    CAS  PubMed  Google Scholar 

  15. Iber C (2007) The AASM manual for the scoring of sleep and associated events, rules, terminology and technical specifications. American Academy of Sleep Medicine, Westchester

  16. Jobert M, Wilson FJ, Roth T et al (2013) Guidelines for the recording and evaluation of pharmaco-sleep studies in man: the International Pharmaco-EEG Society (IPEG). Neuropsychobiology 67:127–167

    Article  PubMed  Google Scholar 

  17. Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14:540–545

    CAS  PubMed  Google Scholar 

  18. Kim HY (2013) Statistical notes for clinical researchers: evaluation of measurement error 1: using intraclass correlation coefficients. Restor Dent Endod 38:98–102

    Article  PubMed Central  PubMed  Google Scholar 

  19. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  20. Liendl S, Hoffmann RM (1999) Sleep logs: about problems with compliance—development of a short version of standard questionnaires [German]. Somnologie 3:73–77

    Article  Google Scholar 

  21. Luthi A (2013) Sleep spindles: where they come from, what they do. Neuroscientist 20:243–256

    Article  PubMed  Google Scholar 

  22. Mednick SC, Mcdevitt EA, Walsh JK et al (2013) The critical role of sleep spindles in hippocampal-dependent memory: a pharmacology study. J Neurosci 33:4494–4504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Morin A, Doyon J, Dostie V et al (2008) Motor sequence learning increases sleep spindles and fast frequencies in post-training sleep. Sleep 31:1149–1156

    PubMed Central  PubMed  Google Scholar 

  24. Schabus M, Gruber G, Parapatics S et al (2004) Sleep spindles and their significance for declarative memory consolidation. Sleep 27:1479–1485

    PubMed  Google Scholar 

  25. Schimicek P, Zeitlhofer J, Anderer P et al (1994) Automatic sleep-spindle detection procedure: aspects of reliability and validity. Clin Electroencephalogr 25:26–29

    Article  CAS  PubMed  Google Scholar 

  26. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428

    Article  CAS  PubMed  Google Scholar 

  27. Silverstein LD, Levy CM (1976) The stability of the sigma sleep spindle. Electroencephalogr Clin Neurophysiol 40:666–670

    Article  CAS  PubMed  Google Scholar 

  28. Steriade M (2003) The corticothalamic system in sleep. Front Biosci 8:d878–d899

    Article  CAS  PubMed  Google Scholar 

  29. Suetsugi M, Mizuki Y, Ushijima I et al (2001) The effects of diazepam on sleep spindles: a qualitative and quantitative analysis. Neuropsychobiology 43:49–53

    Article  CAS  PubMed  Google Scholar 

  30. Tan X, Campbell IG, Palagini L et al (2000) High internight reliability of computer-measured NREM delta, sigma, and beta: biological implications. Biol Psychiatry 48:1010–1019

    Article  CAS  PubMed  Google Scholar 

  31. Tucker AM, Dinges DF, Van Dongen HP (2007) Trait interindividual differences in the sleep physiology of healthy young adults. J Sleep Res 16:170–180

    Article  PubMed  Google Scholar 

  32. Van Dongen HP, Maislin G, Dinges DF (2004) Dealing with inter-individual differences in the temporal dynamics of fatigue and performance: importance and techniques. Aviat Space Environ Med 75:A147–A154

    Google Scholar 

  33. Van Dongen HP, Olofsen E, Dinges DF et al (2004) Mixed-model regression analysis and dealing with interindividual differences. Methods Enzymol 384:139–171

    Article  Google Scholar 

  34. Van Dongen HP, Vitellaro KM, Dinges DF (2005) Individual differences in adult human sleep and wakefulness: Leitmotif for a research agenda. Sleep 28:479–496

    Google Scholar 

  35. Weeß HG, Schürmann T, Steinberg R (2002) Das Landecker Inventar zur Erfassung von Schlafstörungen (LISST) [German]. In: Schulz H (ed) Kompendium Schlafmedizin. Ecomed, Landsberg

  36. Werth E, Achermann P, Dijk DJ et al (1997) Spindle frequency activity in the sleep EEG: individual differences and topographic distribution. Electroencephalogr Clin Neurophysiol 103:535–542

    Article  CAS  PubMed  Google Scholar 

  37. Zeitlhofer J, Gruber G, Anderer P et al (1997) Topographic distribution of sleep spindles in young healthy subjects. J Sleep Res 6:149–155

    Article  CAS  PubMed  Google Scholar 

  38. Zung WW (1965) A self-rating depression scale. Arch Gen Psychiatry 12:63–70

    Article  CAS  PubMed  Google Scholar 

  39. Zung WW (1971) A rating instrument for anxiety disorders. Psychosomatics 12:371–379

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was funded (grant number: FM 8846) by the Federal Agency for Public Safety Digital Radio (BDBOS), commissioned by the German Federal Office for Radiation Protection (BfS). The authors would like to thank all participants and PD Dr. Blanka Pophof from the BfS for her competent expert consultation.

Compliance with ethical guidelines

Conflict of interest. H. Danker-Hopfe was shareholder and chairman of the supervisory board of the SIESTA Schlafanalyse GmbH until May 2013. T. Eggert, C. Sauter, H. Dorn, A. Peter, ML. Hansen, and A. Marasanov state that there are no conflicts of interest.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Eggert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eggert, T., Sauter, C., Dorn, H. et al. Individual stability of sleep spindle characteristics in healthy young males. Somnologie 19, 38–45 (2015). https://doi.org/10.1007/s11818-015-0697-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-015-0697-x

Keywords

Schlüsselwörter

Navigation