Skip to main content
Log in

Sleep duration and metabolic syndrome

A gene–environment association

Schlafdauer und metabolisches Syndrom

Eine Gen-Umwelt-Beziehung

  • Review
  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Abstract

Extremes in duration of sleep have been associated with adverse health, specifically with the symptomatology characteristic of the metabolic syndrome. Body homeostasis and circadian rhythm are thought to interact and to influence energy metabolism. Environmental cues, such as time of year and amplitude of seasonal changes (changes in photoperiod length) influence both sleep behavior and energy metabolism, supporting a link between these two systems. However, little is known about the molecular mechanism underlying the relationships of sleep and the metabolic syndrome symptoms, or the sleep–circadian phenotypes per se. In genetic association studies on sleep duration (candidate clock genes approach and genome-wide association studies), we identified genes that are functionally involved in the development of the metabolic syndrome symptomatology. Although the relationship between sleep duration and body mass index may partly be caused by environmental influences such as voluntary sleep restriction and circadian misalignment, the association of sleep duration with genes related to metabolism indicates that genetic factors are central to it. In this article, the latest evidence of a gene–environment influence on the relationship of sleep duration with the metabolic syndrome symptomatology is discussed. Greater understanding of a common genetic pathway linking sleep duration to metabolic dysfunction, and the role of environment in the mediation of this relationship, will lead to the development of new guidelines for treatment of obesity, which is a major health issues in our society.

Zusammenfassung

Extreme der Schlafdauer sind in den letzten Jahren mit negativen gesundheitlichen Folgen, die das metabolische Syndrom kennzeichnen, in Verbindung gebracht worden. Es wird vermutet, dass die Homöostase des Körpers sowie der zirkadiane Rhythmus interagieren und den Energiestoffwechsel beeinflussen. Umwelteinflüsse wie Jahreszeit und Amplitude jahreszeitlicher Veränderungen (Länge der Photoperiode) beeinflussen sowohl das Schlafverhalten als auch den Energiestoffwechsel, was den Zusammenhang zwischen diesen Systemen untermauert. Allerdings ist über die molekularen Mechanismen, die diesen Wechselwirkungen bzw. den Schlaf-/zirkadianen Phänotypen zugrunde liegen, nur wenig bekannt. In genetischen Assoziationsstudien über die Schlafdauer (Kandidaten-Uhrengene-Ansatz und genomweite Assoziationsstudien) haben wir Gene identifiziert, die an der Entwicklung der Symptomatik des metabolischen Syndroms funktionell beteiligt sind. Auch wenn der Zusammenhang von Schlafdauer und Body-Mass-Index teilweise durch Umwelteinflüsse, wie z. B. freiwillige Schlafrestriktion und zirkadiane Abweichung, erklärt werden mag, deutet das Verhältnis von Schlafdauer und mit dem Stoffwechsel verbundenen Genen darauf hin, dass genetische Faktoren hierbei eine zentrale Rolle spielen. In diesem Beitrag diskutieren wir die neuesten Erkenntnisse eines Gen-Umwelt-Einflusses auf den Zusammenhang zwischen Schlafdauer und Symptomatik des metabolischen Syndroms. Ein besseres Verständnis eines gemeinsamen molekularen Signalwegs, der Schlafdauer mit Stoffwechselstörungen verbindet, sowie der Rolle der Umwelt in der Vermittlung dieser Beziehung wird zur Entwicklung neuer Richtlinien für die Behandlung von Fettleibigkeit führen, welche eine der wichtigen Gesundheitsfragen in unserer Gesellschaft darstellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Abbreviations

BMAL1:

brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like

CLOCK:

circadian locomotor output cycles kaput

CRY:

cryptochromes are a class of blue light-sensitive flavoproteins found in plants and animals; encoded by the genes CRY1 and CRY2

DBP:

D site of albumin promoter (albumin D-box) binding protein

DEC2:

BHLHB3; class E basic helix–loop–helix protein 41

Hyperkinetic:

encodes a beta subunit of Shaker potassium channels in Drosophila

KCNAB1:

voltage-gated potassium channel subunit beta-1

KIR :

inwardly rectifying potassium channels

NPAS2:

neuronal PAS domain-containing protein 2

ob/ob mice:

genetic model of leptin deficiency caused by a mutation in the gene (ob); mice eat excessively and become obese

PER:

period; family of genes PER1, PER2, and PER3.

PROK2:

prokineticin 2

REM sleep:

rapid eye movement sleep

Shaker:

a putative potassium channel gene from Drosophila

Sleepless:

encodes a brain-enriched, glycosylphosphatidylinositol-anchored protein in Drosophila

References

  1. Akrouh A, Halcomb SE, Nichols CG, Sala-Rabanal M (2009) Molecular biology of K(ATP) channels and implications for health and disease. IUBMB life 61:971–978

    Article  PubMed  Google Scholar 

  2. Allebrandt KV, Amin N, Muller-Myhsok B et al (2013) A K(ATP) channel gene effect on sleep duration: from genome-wide association studies to function in Drosophila. Mol Psychiatry 18:122–132

    Article  PubMed  CAS  Google Scholar 

  3. Allebrandt KV, Roenneberg T (2008) The search for circadian clock components in humans: new perspectives for association studies. Braz J Med Biol Res 41:716–721

    Article  PubMed  CAS  Google Scholar 

  4. Allebrandt KV, Teder-Laving M, Akyol M et al (2010) CLOCK gene variants associate with sleep duration in two independent populations. Biol Psychiatry 67:1040–1047

    Article  PubMed  CAS  Google Scholar 

  5. Ashcroft FM, Gribble FM (1999) ATP-sensitive K+ channels and insulin secretion: their role in health and disease. Diabetologia 42:903–919

    Article  PubMed  CAS  Google Scholar 

  6. Boden JM, Fergusson DM, Horwood LJ (2010) Cigarette smoking and depression: tests of causal linkages using a longitudinal birth cohort. Br J Psychiatry 196:440–446

    Article  PubMed  Google Scholar 

  7. Borbely AA (1998) Processes underlying sleep regulation. Horm Res 49:114–117

    Article  PubMed  CAS  Google Scholar 

  8. Chutkow WA, Samuel V, Hansen PA et al (2001) Disruption of Sur2-containing K(ATP) channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proc Natl Acad Sci U S A 98:11760–11764

    Article  PubMed  CAS  Google Scholar 

  9. Ciarleglio CM, Axley JC, Strauss BR et al (2011) Perinatal photoperiod imprints the circadian clock. Nat Neurosci 14:25–27

    Article  PubMed  CAS  Google Scholar 

  10. Cizza G, Requena M, Galli G, Jonge L de (2011) Chronic sleep deprivation and seasonality: implications for the obesity epidemic. J Endocrinol Invest 34:793–800

    PubMed  CAS  Google Scholar 

  11. Franken P, Dijk DJ (2009) Circadian clock genes and sleep homeostasis. Eur J Neurosci 29:1820–1829

    Article  PubMed  CAS  Google Scholar 

  12. Franken P, Thomason R, Heller HC, O’Hara BF (2007) A non-circadian role for clock-genes in sleep homeostasis: a strain comparison. BMC Neurosci 8:87

    Article  PubMed  Google Scholar 

  13. Garaulet M, Sanchez-Moreno C, Smith CE et al (2011) Ghrelin, sleep reduction and evening preference: relationships to CLOCK 3111 T/C SNP and weight loss. PLoS One 6:e17435

    Article  PubMed  CAS  Google Scholar 

  14. Gottlieb DJ, O’Connor GT, Wilk JB (2007) Genome-wide association of sleep and circadian phenotypes. BMC Med Genet 8(Suppl 1):9

    Article  Google Scholar 

  15. He Y, Jones CR, Fujiki N et al (2009) The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325:866–870

    Article  PubMed  CAS  Google Scholar 

  16. Huang W, Ramsey KM, Marcheva B, Bass J (2011) Circadian rhythms, sleep, and metabolism. J Clin Invest 121:2133–2141

    Article  PubMed  CAS  Google Scholar 

  17. Jones CR, Campbell SS, Zone SE et al (1999) Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med 5:1062–1065

    Article  PubMed  CAS  Google Scholar 

  18. Kantermann T, Juda M, Merrow M, Roenneberg T (2007) The human circadian clock’s seasonal adjustment is disrupted by daylight saving time. Curr Biol 17:1996–2000

    Article  PubMed  CAS  Google Scholar 

  19. Laposky AD, Bass J, Kohsaka A, Turek FW (2008) Sleep and circadian rhythms: key components in the regulation of energy metabolism. FEBS Lett 582:142–151

    Article  PubMed  CAS  Google Scholar 

  20. Luke A, Guo X, Adeyemo AA et al (2001) Heritability of obesity-related traits among Nigerians, Jamaicans and US black people. Int J Obes Relat Metab Disord 25:1034–1041

    Article  PubMed  CAS  Google Scholar 

  21. McCrimmon RJ, Evans ML, Fan X et al (2005) Activation of ATP-sensitive K+ channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats. Diabetes 54:3169–3174

    Article  PubMed  CAS  Google Scholar 

  22. Mikulecky M, Minarik P, Michalkova D (2004) Insulin gene profile cycles with season of birth of future diabetic children and their relatives. J Pediatr Endocrinol Metab 17:727–730

    Article  PubMed  CAS  Google Scholar 

  23. Partinen M, Kaprio J, Koskenvuo M et al (1983) Genetic and environmental determination of human sleep. Sleep 6:179–185

    PubMed  CAS  Google Scholar 

  24. Rajajarvi E, Antila M, Kieseppa T et al (2010) The effect of seasons and seasonal variation on neuropsychological test performance in patients with bipolar I disorder and their first-degree relatives. J Affect Disord 127:58–65

    Article  PubMed  Google Scholar 

  25. Roenneberg T, Allebrandt KV, Merrow M, Vetter C (2012) Social jetlag and obesity. Curr Biol 22:939–943

    Article  PubMed  CAS  Google Scholar 

  26. Roenneberg T, Merrow M (2005) Circadian clocks—the fall and rise of physiology. Nat Rev 6:965–971

    Article  CAS  Google Scholar 

  27. Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106:4453–4458

    Article  PubMed  CAS  Google Scholar 

  28. Taheri S, Lin L, Austin D et al (2004) Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med 1:e62

    Article  PubMed  Google Scholar 

  29. Taheri S, Thomas GN (2008) Is sleep duration associated with obesity—where do U stand? Sleep Med Rev 12:299–302

    Article  PubMed  Google Scholar 

  30. Turek FW, Joshu C, Kohsaka A et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045

    Article  PubMed  CAS  Google Scholar 

  31. Watson NF, Buchwald D, Vitiello MV et al (2010) A twin study of sleep duration and body mass index. J Clin Sleep Med 6:11–17

    PubMed  Google Scholar 

  32. Wyse CA (2012) Does human evolution in different latitudes influence susceptibility to obesity via the circadian pacemaker?: migration and survival of the fittest in the modern age of lifestyle-induced circadian desynchrony. Bioessays 34:921–924

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.V. Allebrandt PhD..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allebrandt, K. Sleep duration and metabolic syndrome. Somnologie 17, 15–20 (2013). https://doi.org/10.1007/s11818-012-0599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-012-0599-0

Keywords

Schlüsselwörter

Navigation