Skip to main content
Log in

Shoot tip regeneration and optimization of Agrobacterium tumefaciens-mediated transformation of Broccoli (Brassica oleracea var. italica) cv. Green Marvel

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

A protocol of plant regeneration from shoot tips and optimization of Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) cv. Green Marvel have been developed. Shoot tip response was assessed on Murashige and Skoog (MS) medium supplemented with different concentrations of zeatin. The highest regeneration with a maximum of 13 shoots per explant was obtained on MS medium containing 1.5 mg l−1 zeatin. Primary selection of putative transformed explants was performed on the optimized regeneration medium (MS medium containing 1.5 mg l−1 zeatin and 80 mg l−1 kanamycin) for 60 days. The effects of pre-culture, acetosyringone and growth of bacterial culture were studied. Explants precultured on callus induction medium for 4 days prior to inoculation with A. tumefaciens with 200 μM acetosyringone resulted in improved transformation frequency. The Agrobacterium culture dilution of 1:5 and inoculation time of 30 min increased the efficiency of transformation of shoot tip explants. The results also indicated that 150 mg l−1 ampicillin alone was adequate to eradicate Agrobacterium growth in the SRM incorporated with the respective minimum inhibitory concentration of 80 mg l−1 kanamycin. The polymerase chain reaction (PCR) and Southern blot assays confirmed the transgenic status of the broccoli cv. Green Marvel regenerants. A transformation efficiency of 5 % was achieved based on the positive PCR results using the optimized procedure. The expression of luciferase reporter gene in the transformed cells and the transcription of AtHSP101 using RT-PCR further confirmed the transgenic status of the regenerated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Block MD, Brouwer DD, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol 91:694–701. doi:10.1104/pp.91.2.694

    Article  PubMed Central  PubMed  Google Scholar 

  • Cao J, Earle ED (2003) Transgene expression in broccoli (Brassica oleracea var. italica) clones propagated in vitro via leaf explants. Plant Cell Rep 21:789–796. doi:10.1007/s00299-003-0589-6

    CAS  PubMed  Google Scholar 

  • Cardoza V, Stewart CN Jr (2003) Increased Agrobacterium mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl explants. Plant Cell Rep 21:599–604. doi:10.1007/s00299-002-0560-y

    CAS  PubMed  Google Scholar 

  • Cardoza V, Stewart CN Jr (2004) Brassica biotechnology: progress in cellular and molecular biology. In Vitro Cell Dev Biol Plant 40:542–551. doi:10.1079/IVP2004568

    Article  CAS  Google Scholar 

  • Cardoza V, Stewart CN Jr (2006) Agrobacterium protocols, Canola (Brassica napus L.). Meth Mol Biol 343(IV):257–266. doi:10.1385/1-59745-130-4:257

    CAS  Google Scholar 

  • Chakrabarty R, Viswakarma N, Bhat SR, Kirti PB, Singh BD, Chopra VL (2002) Agrobacterium-mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower. J Biosci 27:495–502. doi:10.1007/BF02705046

    Article  CAS  PubMed  Google Scholar 

  • Chen FO, Hwang JY, Charng YY, Sun CW, Yang SF (2001) Transformation of broccoli (Brassica oleracea var. italica) with isopentenyltransferase gene via Agrobacterium tumefaciens for post-harvest yellowing retardation. Mol Breed 7(3):243–257. doi:10.1023/A:1011357320259

    Article  CAS  Google Scholar 

  • Cheng L, Li HP, Qu B, Huang T, Tu JX, Fu TD, Liao YC (2010) Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant Cell Rep 29(4):371–381. doi:10.1007/s00299-010-0828-6

    Article  CAS  PubMed  Google Scholar 

  • Cornejo M, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581. doi:10.1007/BF00019304

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Henzi MX, Christey MC, McNeil DL (2000) Factors that influence Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica). Plant Cell Rep 19:994–999. doi:10.1007/s002990000221

    Article  CAS  Google Scholar 

  • Hiei Y, Ishida Y, Kasaoka K, Komari T (2006) Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tissue Org Cult 87:233–243. doi:10.1007/s11240-006-9157-4

    Article  Google Scholar 

  • Hong S, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci 97:4392–4397. doi:10.1073/pnas.97.8.4392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong ZJ, Yan ZH, Guo TN, Fang TY, Yun ZX, Xiu LY (2009) Several methods to detect the inheritance and resistance to the Diamondback moth in transgenic Chinese cabbage. Afr J Biotech 8(12):2887–2892. doi:10.5897/AJB08.870

    Google Scholar 

  • Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of HSP101. Plant Mol Biol 51:677–686. doi:10.1023/A:1022561926676

    Article  CAS  PubMed  Google Scholar 

  • Khan MMA, Robin ABMAHK, Nazim-ud-dowla MAN, Talukderand SK, Hassan L (2009) Agrobacterium-mediated genetic transformation of two varieties of brassica: optimization of protocol. Bangladesh J Agric Res 34(2):287–301. doi:10.3329/bjar.v34i2.5802

    Google Scholar 

  • Kong F, Li J, Tan X, Zhang L, Zhang Z, Ma CQX (2009) A new time-saving transformation system for Brassica napus. Afr J Biotech 8(11):2497–2502. doi:10.5897/AJB09.240

    CAS  Google Scholar 

  • Kuta DD, Tripathi L (2005) Agrobacterium-induced hypersensitive necrotic reaction in plant cells: a resistance response against Agrobacterium-mediated DNA transfer. Afr J Biotech 4(8):752–757

    CAS  Google Scholar 

  • Li XB, Zheng SX, Dong WB, Chen GR, Mao HZ, Bai YY (1999) Insect-resistant transgenic plants of Brassica napus and analysis of resistance in the plants. Acta Genet Sin 26(3):262–268

    CAS  PubMed  Google Scholar 

  • Lim HT, You YS, Park EJ (1997) Plant regeneration and genetic transformation of Brassica campestris ssp. pekinensis via organogenesis. HortScience 32(3):512–513

  • Metz RD, Dixit R, Earle ED (1995) Agrobacterium tumefaciens mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Rep 15:287–292. doi:10.1007/BF00193738

    CAS  PubMed  Google Scholar 

  • Min BW, Cho YN, Song MJ, Noh TK, Kim BK, Chae WK, Park YS, Choi YD, Harn CH (2007) Successful genetic transformation of Chinese cabbage using phosphomannose isomerase as a selection marker. Plant Cell Rep 26(3):337–344. doi:10.1007/s00299-006-0247-x

    Article  CAS  PubMed  Google Scholar 

  • Munir M, Rashid H, Rauf M, Chaudhry Z, Bukhari MS (2008) Callus formation and plantlets regeneration from hypocotyl of Brassica napus by using different media combinations. Pak J Bot 40(1):309–315

    CAS  Google Scholar 

  • Murashige T, Skoog FA (1962) revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Narberhaus F (2010) Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs. RNA Biol 7(1):84–89

    Article  CAS  PubMed  Google Scholar 

  • Nugent GD, Coyneb S, Nguyena TT, Kavanaghb TA, Dix PJ (2006) Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Sci 170(1):135–142. doi:10.1016/j.plantsci.2005.08.020

    Article  CAS  Google Scholar 

  • Omar SA, Fu QT, Chen MS, Wang GJ, Song SQ, Elsheery NI, Xu ZF (2011) Identification and expression analysis of two small heat shock protein cDNAs from developing seeds of biodiesel feedstock plant Jatropha curcas. Plant Sci 181(6):632–637. doi:10.1016/j.plantsci.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  • Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol Rev 1:12–20

    Google Scholar 

  • Ow DW, Wood KV, DeLuk M, Wet JR, Helinski DR, Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856–859. doi:10.1126/science.234.4778.856

    Article  CAS  PubMed  Google Scholar 

  • Puddephat IJ, Robinson HT, Fenning TM, Barbara DJ, Morton A, Pink DAC (2001) Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenes mediated co-transformation and selection of transformed hairy roots by GUS assay. Mol Breed 7:229–242. doi:10.1023/A:1011338322000

    Article  CAS  Google Scholar 

  • Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492. doi:10.1105/tpc.12.4.479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rafat A, Aziz MA, Rashid AA, Abdullah SNA, Kamaladini H, Sirchi MHT, Javadi MB (2010) Optimization of Agrobacterium tumefaciens-mediated transformation and shoot regeneration after co-cultivation of cabbage (Brassica oleracea subsp. capitata) cv. KY Cross with AtHSP101 gene. Sci Hortic 124:1–8. doi:10.1016/j.scienta.2009.11.015

    Article  CAS  Google Scholar 

  • Ravanfar SA, Aziz MA, Kadir MA, Rashid AA, Sirchi MHT (2009) Plant regeneration of Brassica oleracea subsp. italica (Broccoli) cv Green Marvel as affected by plant growth regulators. Afr J Biotech 10(29):5614–5619. doi:10.5897/AJB2009.000-9304

    Google Scholar 

  • Ravanfar SA, Aziz MA, Shabanimofrad M, Samarfard S (2013) Greenhouse evaluation on the performance of heat tolerant transgenic broccoli and genetic diversity analysis using inter simple sequence repeat (ISSR) markers. Electron J Biotech 16(5):1–10. doi:10.2225/vol16-issue5-fulltext-10

    Google Scholar 

  • Ravanfar SA, Shahida S, Aziz MA, Abdullah SNA, Rashid AA (2014a) Influence of phenyl-urea and adenine-type cytokinins on direct adventitious shoot regeneration of cabbage (Brassica oleracea subsp. capitata) “KY Cross”. Plant Biotech 31(3):275–280. doi:10.5511/plantbiotechnology.14.0514a

    Article  CAS  Google Scholar 

  • Ravanfar SA, Aziz MA, Rashid AA, Shahida S (2014b) In vitro adventitious shoot regeneration from cotyledon explant of Brassica oleracea subsp. italica and Brassica oleracea subsp. capitata using TDZ and NAA. Pak J Bot 46(1):329–335

    Google Scholar 

  • Sadasivam S, Gallie DR (1994) Isolation and transformation of rice aleurone protoplasts. Plant Cell Rep 13:394–396. doi:10.1007/BF00234145

    Article  CAS  PubMed  Google Scholar 

  • Su PH, Li HM (2008) Arabidopsis stromal 70-kd heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146(3):1231–1241. doi:10.1104/pp.107.114496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suri SS, Saini ARK, Ramawat KG (2005) High frequency regeneration and Agrobacterium tumefaciens -mediated transformation of broccoli (Brassica oleracea var. italica). Eur J Hortic Sci 70(2):71–78

  • Vasudevan A, Selvaraj N, Ganapathi A, Choi CW (2007) Agrobacterium-mediated genetic transformation in cucumber (Cucumis sativus L.). Am J Biotechnol Biochem 3:24–32. doi:10.3844/ajbbsp.2007.24.32

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opinion Biotech 16(2):123–132. doi:10.1016/j.copbio.2005.02.001

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Env Exp Bot 61:199–223. doi:10.1016/j.envexpbot.2007.05.011

    Article  Google Scholar 

  • Xing Y, Yang Q, Ji Q, Luo Y, Zhang Y, Gu K, Wang D (2007) Optimization of Agrobacterium-mediated transformation parameters for sweet potato embryogenic callus using b-glucuronidase (GUS) as a reporter. Afr J Biotech 6:2578–2584. doi:10.5897/AJB2007.000-2411

    CAS  Google Scholar 

  • Yi D, Lei C, Yu-mei L, Mu Z, Yang-yong Z, Zhi-yuan F, Li-mei Y (2011) Transformation of cabbage (Brassica oleracea L. var. capitata) with Bt cry1Ba3 gene for control of diamondback Moth. Agric Sci China 10(11):1693–1700. doi:10.1016/S1671-2927(11)60167-3

    Article  CAS  Google Scholar 

  • Young JM, Kerr A, Sawada H (2003) Genus Agrobacterium. In Bergey’s manual of systematic bacteriology, 2nd edn, vol 2 (in press). Springer, New York

  • Zhao S, Lei JJ, Chen GJ, Cao BH (2008) Application of kanamycin in transgenic mustard (Brassica juncea Coss.). Hereditas 30(4):501–507. doi:10.3724/SP.J.1005.2008.00501

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, for the laboratory facilities provided and the financial support in the form of a research grant no. 01/01/07/0300RU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Ali Ravanfar or Maheran Abdul Aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravanfar, S.A., Aziz, M.A. Shoot tip regeneration and optimization of Agrobacterium tumefaciens-mediated transformation of Broccoli (Brassica oleracea var. italica) cv. Green Marvel. Plant Biotechnol Rep 9, 27–36 (2015). https://doi.org/10.1007/s11816-014-0340-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-014-0340-5

Keywords

Navigation