Skip to main content

Advertisement

Log in

Methane steam reforming in a membrane reactor using high-permeable and low-selective Pd-Ru membrane

  • The 11th Korea-China Clean Energy Workshop
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We performed a methane steam reforming (MSR) reaction through a membrane reactor packed with commercial Ni/Al2O3 catalyst and a tubular Pd-Ru membrane deposited on a YSZ modified porous stainless steel support under mild operating conditions: 773 K and a pressure difference range of 100-250 kPa. We prepared the Pd-Ru membrane with thickness of ~6 μm on a tubular stainless steel support (diameter 12.7mm, length 25 cm) using electroless plating, which was observed for the membrane performance using hydrogen and nitrogen. Gas permeation test carried out at 773 K and 31.4 kPa of pressure difference between retentate and permeate sides showed that the hydrogen permeation rate and nitrogen leakage were ~0.1050mol s−1 m−2 and ~0.0018 mol s−1 m−2, respectively. The MSR reaction was under the following conditions: temperature 773 K, pressure 100-250 kPa, gas hourly space velocity (GHSV) 837 h−1, and steam-to-carbon feed ratio (S/C) 3. The MSR reaction result showed that methane conversion was increased with increasing pressure difference and reached ~77.5% at 250 kPa. In this condition, the composition of carbon monoxide was ~2%, meaning that no two series of water gas shift reactors were needed in our membrane reactor system. Longterm stability test carried out for ~100 h showed that methane conversion and the hydrogen yield remained constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Barelli, G. Bidini, F. Gallorini and S. Servili, Energy, 33, 554 (2008).

    Article  CAS  Google Scholar 

  2. L. Chen, Q. Hong, J. Lin and F. M. Dautzenberg, J. Power Sources, 164, 803 (2007).

    Article  CAS  Google Scholar 

  3. S. S. Bharadwaj and L. D. Schmidt, Fuel Proc. Technol., 42, 109 (1995).

    Article  CAS  Google Scholar 

  4. M. Levent, D. J. Gunn and M. A. El-Bousi, Int. J. Hydrogen Energy, 28, 945 (2003).

    Article  CAS  Google Scholar 

  5. J. Shu, B. P. A. Grandjean and S. Kaliaguine, Catal. Today, 25, 327 (1995).

    Article  CAS  Google Scholar 

  6. Y. Matsumura and T. Nakamori, Appl. Catal. A. Gen., 258, 107 (2004).

    Article  CAS  Google Scholar 

  7. C. Pistonesi, A. Juan, B. Irigoyen and N. Amadeo, Appl. Surf. Sci., 253, 4427 (2007).

    Article  CAS  Google Scholar 

  8. S. Uemiya, N. Sato, H. Ando, T. Matsuda and E. Kiluchi, Appl. Catal., 67, 223 (1990).

    Article  Google Scholar 

  9. S. Jorgensen, P. E. H. Nielsen and P. Lehrmann, Catal. Today, 25, 303 (1995).

    Article  Google Scholar 

  10. K. A. Petersen, C. S. Nielsen and S. L. Jørgensen, Catal. Today, 46, 193 (1998).

    Article  Google Scholar 

  11. E. Kikuchi, Y. Nemoto, M. Kajiwara, S. Uemiya and T. Kojima, Catal. Today, 56, 75 (2000).

    Article  CAS  Google Scholar 

  12. E. Kikuchi, Catal. Today, 56, 97 (2000).

    Article  CAS  Google Scholar 

  13. Y. M. Lin, S. L. Liu, C. H. Chuang and Y. T. Chu, Catal. Today, 82, 127 (2003).

    Article  CAS  Google Scholar 

  14. J. Tong and Y. Matsumura, Catal. Today, 111, 147 (2006).

    Article  CAS  Google Scholar 

  15. L. Roses, F. Gallucci, G. Manzolini and M. van Sint Annaland, Chem. Eng. J., 222, 307 (2013).

    Article  CAS  Google Scholar 

  16. R. Bredesen, K. Jordal and O. Bolland, Chem. Eng. Process, 43, 1129 (2004).

    Article  CAS  Google Scholar 

  17. A. Iulianelli, G. Manzolini, M. De Falco, S. Campanari, T. Longo, S. Liguori and A. Basile, Int. J. Hydrogen Energy, 35, 11514 (2010).

    Article  CAS  Google Scholar 

  18. S. T. Oyama and H. Lim, Chem. Eng. J., 151, 351 (2009).

    Article  CAS  Google Scholar 

  19. S. K. Ryi, J. S. Park, K. R. Hwang, D. W. Kim and H. S. An, Korean J. Chem. Eng., 29, 59 (2012).

    Article  CAS  Google Scholar 

  20. S. K. Ryi, J. Y. Han and B. S. Seo, Proceedings of the 21st World Hydrogen Energy Conference, Zaragoza, June 13-16 (2016).

    Google Scholar 

  21. S. K. Ryi, N. Xu, A. Li, C. J. Lim and J. R. Grace, Int. J. Hydrogen Energy, 35, 2328 (2010).

    Article  CAS  Google Scholar 

  22. S. K. Ryi, S. W. Lee, D. K. Oh, B. S. Seo, J. W. Park, J. S. Park, D. W. Lee and S. S. Kim, J. Membr. Sci., 467, 93 (2014).

    Article  CAS  Google Scholar 

  23. B. S. Seo, J. Y. Han, K. Y. Lee, D. W. Kim and S. K. Ryi, Korean J. Chem. Eng. (2016), D. I:10.1007/s11814-016-0256-61.

    Google Scholar 

  24. S. W. Nam, S. P. Yoon, H. Y. Ha, S. A. Hong and A. P. Maganyuk, Korean J. Chem. Eng., 17, 288 (2000).

    Article  CAS  Google Scholar 

  25. J. Tong and Y. Matsumura, Appl. Catal. A. Gen., 286, 226 (2005).

    Article  CAS  Google Scholar 

  26. M. Saric, Y. C. Delft, R. Sumbharaju, D. F. Meyer and A. Groot, Catal. Today, 193, 74 (2012).

    Article  CAS  Google Scholar 

  27. T. Kume, Y. Ikeda, T. Iseki, H. Yakabe, H. Tanaka, H. Hikosaka, Y. Takagi and M. Ito, Int. J. Hydrogen Energy, 38, 6079 (2013).

    Article  CAS  Google Scholar 

  28. B. Dittmar, A. Behrens, N. Schodel, M. Ruttinger, T. Franco, G. Straczewski and R. Dittmeyer, Int. J. Hydrogen Energy, 38, 8759 (2013).

    Article  CAS  Google Scholar 

  29. H. W. A. E. Hava, S. N. Paglieri, C. C. Morris, A. Harale and J. D. Way, Sep. Purif. Technol., 147, 338 (2015).

    Google Scholar 

  30. H. W.A. E. Hawa, S. T. B. Lundin, N. S. Patki and J. D. Way, Int. J. Hydrogen Energy, 41, 10193 (2016).

    Article  Google Scholar 

  31. S. K. Ryi, J. Y. Han, C. H. Kim and B. S. Seo, Korean J. Chem. Eng., 33, 2699 (2016).

    Article  CAS  Google Scholar 

  32. S. K. Ryi, J. S. Park, D. K. Kim, T. H. Kim and S. H. Kim, J. Membr. Sci., 339, 189 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Kun Ryi.

Additional information

This paper is reported in the 11th China-Korea clean Energy Workshop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, CH., Han, JY., Lim, H. et al. Methane steam reforming in a membrane reactor using high-permeable and low-selective Pd-Ru membrane. Korean J. Chem. Eng. 34, 1260–1265 (2017). https://doi.org/10.1007/s11814-016-0359-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0359-0

Keywords

Navigation