Skip to main content
Log in

Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

SnS nanospheres (NSPs) were synthesized, and the effects of thermal annealing on the structural, morphological, chemical compositional and optical properties were examined. As-synthesized SnS NPSs with a mean size of 3-4 nm underwent a solid state morphological transformation by high temperature annealing in a nitrogen environment. Upon annealing, the size of SnS NSP increased to 5-6 nm with enhanced crystallinity. Also, the photoluminescence (PL) of the nitrogen-annealed samples slightly decreased in intensity with accompanying red-shift in spectrum. The power conversion efficiency of the solar cells using a polymer and the SnS NSPs was ~0.71%. These results confirm that the SnS NSPs demonstrate a potential as an inorganic material to be used in organic-inorganic hybrid bulk heterojunction (BHJ) photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Hong, T. Choi and J. H. Kim, Korean J. Chem. Eng., 32, 424 (2015).

    Article  CAS  Google Scholar 

  2. H. Peng, L. Jiang, J. Huang and G. Li, J. Nanopart. Res., 9, 1163 (2007).

    Article  CAS  Google Scholar 

  3. N. T. N. Truong, T. P. N. Nguyen and C. Park, Inter. J. Photoenergy, 2013, ID 146582 (2013).

    Google Scholar 

  4. L. Burton and A. Wash, J. Phys. Chem. C., 116, 24262 (2012).

    Article  CAS  Google Scholar 

  5. K. T. R. Reddy, N. K. Reddy and R. W. Miles, Sol. Energy Mater. Sol. Cells, 90, 3041 (2006).

    Article  Google Scholar 

  6. M. Sugiyama, Y. Murata, T. Shimizu, K. Ramya, C. Venkataiah, T. Sato and K. T. R. Reddy, Jpn. J. Appl. Phys., 50, 05FH03 (2011).

    Article  Google Scholar 

  7. G. H. Yue, D. L. Peng, P. X. Yan, L. S. Wang, W. Wang and X. H. Luo, J. Alloys. Compd., 468, 254 (2009).

    Article  CAS  Google Scholar 

  8. K. T. R. Reddy, P. Reddy, P. K. Datta and R. W. Miles, Thin Solid Films, 403, 116 (2002).

    Article  Google Scholar 

  9. N. K. Reddy, Y. B. Hahn, Y. B. Devika, H. R. Sumana and K. R. Gunasekhar, J. Appl. Phys., 101, 093522 (2007).

    Article  Google Scholar 

  10. P. Pramanik, P. K. Basu and S. Biswas, Thin Solid Films, 150, 269 (1987).

    Article  CAS  Google Scholar 

  11. C. An, K. Tang, Y. Jin, Q. Liu, X. Chen and Y. Qian, J. Cryst. Growth, 252, 575 (2003).

    Article  CAS  Google Scholar 

  12. S. Y. Hong, R. P. Biro, Y. Prior and R. Tenne, J. Am. Chem. Soc., 125, 10470 (2003).

    Article  CAS  Google Scholar 

  13. J. Liu and D. Xue, Electrochimica Acta, 56, 243 (2010).

    Article  CAS  Google Scholar 

  14. B. Thangaraju and P. Kaliannan, J. Phys. D: Appl. Phys., 33, 1054 (2000).

    Article  CAS  Google Scholar 

  15. A. Ortiz, J. C. Alonso, M. Garcia and J. Toriz, Semicond. Sci. Technol., 11, 243 (1996).

    Article  CAS  Google Scholar 

  16. L. S. Price, U. P. Parkin, A. M. E. Hardy, R. J. H. Clark, T. G. Hibbert and K. C. Molloy, Chem. Mater., 11, 1792 (1999).

    Article  CAS  Google Scholar 

  17. Y. Oda, H. Shen, L. Zhao, J. Li, M. Iwamoto and H. Lin, Sci. Technol. Adv. Mater., 15, 035006 (2014).

    Article  Google Scholar 

  18. S. Sohila, M. Rajalakshmi, C. Chosh, A. K. Arora and C. Muthamizhchelvan, J. Alloys Compound, 509, 5843 (2011).

    Article  CAS  Google Scholar 

  19. S. Sohila, M. Rajalakshmi, C. Muthamizhchelvan, S. Kalavathi, C. Ghosh, R. Divakar, C. N. Venkiteswaran, N. G. Muralidharan, A. K. Arora and E. Mohandas, Mater. Lett., 65, 1148 (2011).

    Article  CAS  Google Scholar 

  20. R. S. Zeferino, U. Pal, R. Melendrez and M. B. Flores, Adv. Nano Res., 1, 193 (2013).

    Article  Google Scholar 

  21. L. E. Brus, J. Chem. Phys., 80, 4403 (1984).

    Article  CAS  Google Scholar 

  22. A. P. Alivisatos, J. Phys. Chem., 100, 13226 (1996).

    Article  CAS  Google Scholar 

  23. Y. P. Varshni, Physica., 34, 149 (1967).

    Article  CAS  Google Scholar 

  24. S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu and P. K Chu, Nanotechnology, 17, 1695 (2006).

    Article  CAS  Google Scholar 

  25. L. S. Price, I. P. Parkin, M. N. Field, A. M. E. Hardy, R. J. H. Clark, T. G. Hibbert and K. C. Molloy, J. Mater. Chem., 10, 527 (2000).

    Article  CAS  Google Scholar 

  26. Y. Zhao, Z. Zhang, H. Dang and W. Liu, Mater. Sci. Eng. B., 113, 175 (2004).

    Article  Google Scholar 

  27. S. D. Baranovskii, M. Wiemer, A. V. Nenashev, F. Jansson and F. Gebhard, J. Phys. Chem. Lett., 3, 1214 (2012).

    Article  CAS  Google Scholar 

  28. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 270, 1789 (1995).

    Article  CAS  Google Scholar 

  29. I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi and J. K. Olesiak, J. Phys. Chem., 114, 12784 (2010).

    CAS  Google Scholar 

  30. P. E. Shaw, A. Ruseckas and I. D. Samuel, Adv. Mater., 20, 3516 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinho Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, N.T.N., Hoang, H.H.T., Trinh, T.K. et al. Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance. Korean J. Chem. Eng. 34, 1208–1213 (2017). https://doi.org/10.1007/s11814-016-0347-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0347-4

Keywords

Navigation