Skip to main content
Log in

A new approach for modeling of multicomponent gas hydrate formation

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Several models have been proposed to investigate the kinetics of gas hydrate formation. The main differences between the proposed models are the definition of the driving force, thermodynamics approach and the number of resistances to study the gas consumption by the hydrate phase. This paper concentrates on gas hydrate formation from multicomponent mixture, which has not been much studied before. In the present research, chemical potential has been considered as the driving force and, consequently, a new resistance coefficient was introduced. A complete discussion and reasonable assumptions has been provided to support this modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.D. Sloan, J. Chem. Therm., 35, 41 (2003).

    Article  Google Scholar 

  2. H.P. Veluswamy, P. S.R. Prasad and P. Linga, Korean J. Chem. Eng., 33, 1 (2015).

    Google Scholar 

  3. A. K. Sum, C. Koh and E.D. Sloan, Ind. Eng. Chem. Res., 48, 7457 (2009).

    Article  CAS  Google Scholar 

  4. I. Chatti, Energy Convers. Manage., 46, 1333 (2005).

    Article  CAS  Google Scholar 

  5. K. Nazridoust and G. Ahmadi, Chem. Eng. Sci., 62, 6155 (2007).

    Article  CAS  Google Scholar 

  6. A. Vysniauskas and P. Bishnoi, Chem. Eng. Sci., 38, 1061 (1983).

    Article  CAS  Google Scholar 

  7. P. Englezos and P. Bishnoi, Chem. Eng. Sci., 42, 2647 (1987).

    Article  CAS  Google Scholar 

  8. C. Gaillard, J. Monfort and J. Peytavy, International Conference on Natural Gas Hydrates (1996).

    Google Scholar 

  9. J. Monfort, Annals of the New York Academy of Sciences, 912, 753 (2000).

    Article  CAS  Google Scholar 

  10. M.A. Clarke and P. Bishnoi, Chem. Eng. Sci., 60, 695 (2005).

    Article  CAS  Google Scholar 

  11. J. Zhang, S. Lee and J.W. Lee, Ind. Eng. Chem. Res., 46, 6353 (2007).

    Article  CAS  Google Scholar 

  12. P. Skovborg and P. Rasmussen, Chem. Eng. Sci., 49, 1131 (1994).

    Article  CAS  Google Scholar 

  13. D. Kashchiev and A. Firoozabadi, J. Crystal Growth, 241, 220 (2002).

    Article  CAS  Google Scholar 

  14. C. P. Ribeiro and P.L. Lage, Chem. Eng. Sci., 63, 2007 (2008).

    Article  CAS  Google Scholar 

  15. V. Mohebbi, A. Naderifar, R.M. Behbahani and M. Moshfeghian, Chem. Eng. Sci., 76, 580 (2012).

    Article  Google Scholar 

  16. S. Lee, J. Zhang, R. Mehta, T. Woo and W. Lee, J. Phys. Chem., 111, 4734 (2007).

    CAS  Google Scholar 

  17. M.K. Chun and H. Lee, Korean J. Chem. Eng., 13, 620 (1996).

    Article  CAS  Google Scholar 

  18. M. B. Malegaonkar, P.D. Dholabhai and P.R. Bishnoi, Canadian J. Chem. Eng., 75, 1090 (1997).

    Article  CAS  Google Scholar 

  19. S. Bergeron and P. Servio, Fluid Phase Equilib., 265, 30 (2008).

    Article  CAS  Google Scholar 

  20. S. Bergeron, J. G. Beltrán and P. Servio, Fuel, 89, 294 (2010).

    Article  CAS  Google Scholar 

  21. J. Zhang and J.W. Lee, Ind. Eng. Chem. Res., 48, 5934 (2008).

    Article  Google Scholar 

  22. M. Naseh, V. Mohebbi and R. Behbahani, J. Chem. Eng. Data, 59, 3710 (2014).

    Article  CAS  Google Scholar 

  23. S. Bergeron and P. Servio, Fluid phase Equilib., 276, 150 (2009).

    Article  CAS  Google Scholar 

  24. M. Najafi and V. Mohebbi, J. Nat. Gas Sci. Eng., 21, 738 (2014).

    Article  CAS  Google Scholar 

  25. A. Izadpand, M. Vafaie and F. Varaminian, Iranian J. Chem. Chem. Eng., 26, 61 (2007).

    Google Scholar 

  26. B. Peng, J. Phys. Chem., 111, 12485 (2007).

    Article  CAS  Google Scholar 

  27. S. Babaee, J. Chem. Therm., 81, 52 (2015).

    Article  CAS  Google Scholar 

  28. H. Hashemi, J. Chem. Therm., 82, 47 (2015).

    Article  CAS  Google Scholar 

  29. R. Christiansen and E.D. Sloan, Gas Processors Association, Tulsa (1995).

    Google Scholar 

  30. V. Mohebbi, A. Naderifar, R. M. Behbahani and M. Moshfeghian, J. Chem. Therm., 51, 8 (2012).

    Article  CAS  Google Scholar 

  31. G. Soave, Chem. Eng. Sci., 27, 1197 (1972).

    Article  CAS  Google Scholar 

  32. A. Danesh, PVT and phase behavior of petroleum reservoir fluids, Elsevier (1998).

    Google Scholar 

  33. V. Mohebbi and R. Behbahani, J. Nat. Gas Sci. Eng., 18, 47 (2014).

    Article  CAS  Google Scholar 

  34. R. E. Treybal, Mass transfer operations, McGraw Hill (1980).

    Google Scholar 

  35. H. S. Fogler, Elements of chemical reaction engineering, Prentice Hall (1999).

    Google Scholar 

  36. W.R. Parrish and J. M. Prausnitz, Ind. Eng. Chem. Process Des. Dev., 11, 26 (1972).

    Article  CAS  Google Scholar 

  37. Gas Processors and Suppliers Association Engineering Data Book, Tulsa, Oklahoma, U.S.A. (2004).

  38. J. Munck, S. Skjold-Jørgensen and P. Rasmussen, Chem. Eng. Sci., 43, 2661 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Mohebbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebbi, V., Behbahani, R.M. & Naderifar, A. A new approach for modeling of multicomponent gas hydrate formation. Korean J. Chem. Eng. 34, 706–716 (2017). https://doi.org/10.1007/s11814-016-0318-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0318-9

Keywords

Navigation