Skip to main content
Log in

Performance assessment and system optimization of a combined cycle power plant (CCPP) based on exergoeconomic and exergoenvironmental analyses

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We propose a systematic approach for performance evaluation and improvement of a combined cycle power plant (CCPP). Exergoeconomic and exergoenvironmental analyses are used to assess CCPP performance and suggest improvement potentials in economic and environmental aspects, respectively. Economic and environmental impacts of individual system components are calculated by cost functions and life cycle assessments. Both analyses are based on a CCPP case study located in Turkey, which consists of two gas turbine cycles and a steam turbine cycle with two different pressure heat recovery units. The results of the exergoeconomic analysis indicate that the combustion chamber and condenser have a high performance improvement potential by increasing capital cost. Furthermore, the exergoenvironmental analysis shows that the exergy destruction of the steam turbine and combustion chamber and/or the capacity of heat recovery units must be reduced in order to improve environmental performance. This study demonstrates that combined exergoeconomic and exergoenvironmental analyses are useful for finding improvement potentials for system optimization by simultaneously evaluating economic and environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Ersayin and I. Ozgener, Renew. Sust. Energy Rev., 43, 832 (2015).

    Article  Google Scholar 

  2. I. J. Esfahani, J. Rashidi, P. Ifaei and C. Yoo, Korean J. Chem. Eng., 33, 351 (2016).

    Article  CAS  Google Scholar 

  3. A.G. Kaviri, M.N.M. Jaafar and T. M. Lazim, Energy Convers. Manage., 58, 94 (2012).

    Article  Google Scholar 

  4. S. A. Ashrafizadeh, M. Amidpour and A. Allahverdi, Korean J. Chem. Eng., 29, 606 (2012).

    Article  CAS  Google Scholar 

  5. M. Ameri, P. Ahmadi and S. H. Khanmohammadi, Int._J. Energy Res., 32, 175 (2008).

    Article  CAS  Google Scholar 

  6. F. A. Boyaghchi and H. Molaie, Energy Convers. Manage., 99, 374 (2015).

    Article  Google Scholar 

  7. M. Sharma and O. Singh, Appl. Therm. Eng., 93, 614 (2016).

    Article  Google Scholar 

  8. J. H. Lee, N. S. Kwak, I.Y. Lee, K.R. Jang, D.W. Lee, S. G. Jang, B. K. Kim and J. G. Shim, Korean J. Chem. Eng., 32, 800 (2015).

    Article  CAS  Google Scholar 

  9. N. S. A. Rasid, S. S. A. Syed-Hassan, S. A. S. A. Kadir and M. Asadullah, Korean J. Chem. Eng., 30, 1277 (2013).

    Article  Google Scholar 

  10. L.G. Farshi, S. M. S. Mahmoudi and M.A. Rosen, Appl. Energy, 103, 700 (2013).

    Article  Google Scholar 

  11. M. Modesto and S. A. Nebra, Appl. Therm. Eng., 29, 2127 (2009).

    Article  CAS  Google Scholar 

  12. L. Meyer, G. Tsatsaronis, J. Buchgeister and L. Schebek, Energy, 34, 75 (2009).

    Article  Google Scholar 

  13. A. Baghernejad and M. Yaghoubi, Energy Convers. Manage., 52, 2193 (2011).

    Article  Google Scholar 

  14. P. Ahmadi and I. Dincer, Energy Convers. Manage., 52, 2296 (2011).

    Article  Google Scholar 

  15. K.A. Kelly, M.C. McManus and G.P. Hammond, Energy, 77, 812 (2014).

    Article  Google Scholar 

  16. A. Boyano, T. Morosuk, A.M. Blanco-Marigorta and G. Tsatsaronis, J. Cleaner Prod., 20, 152 (2012).

    Article  CAS  Google Scholar 

  17. A. Ganjehkaviri, M. M. Jaafar, P. Ahmadi and H. Barzegaravval, Appl. Therm. Eng., 67, 566 (2014).

    Article  Google Scholar 

  18. S.O. Oyedepo, R.O. Fagbenle, S. S. Adefila and M. Alam, Energy Sci. Eng., 3, 423 (2015).

    Article  Google Scholar 

  19. I. J. Esfahani and C.K. Yoo, Energy, 75, 327 (2014).

    Article  Google Scholar 

  20. A.D. Akbari and S.M. Mahmoudi, Energy, 78, 501 (2014).

    Article  CAS  Google Scholar 

  21. L. S. Vieira, J. L. Donatelli and M. E. Cruz, Appl. Therm. Eng., 26, 654 (2006).

    Article  CAS  Google Scholar 

  22. P. Roosen, S. Uhlenbtuck and K. Lucas, Int. J. Therm. Sci., 42, 553 (2003).

    Article  Google Scholar 

  23. I. J. Esfahani, Y.T. Kang and C. K. Yoo, Energy, 75, 312 (2014).

    Article  Google Scholar 

  24. A. Lazzaretto and G. Tsatsaronis, Energy, 31, 1257 (2006).

    Article  CAS  Google Scholar 

  25. EIA, “http://www.eia.gov/dnav/ng/hist/rngwhhdm.htm”, US (2014).

  26. J. Guinée, Int. J. Life Cycle Assess., 6, 255 (2002).

    Article  Google Scholar 

  27. A. Bejan, G. Tsatsaronis and M. J. Moran, Thermal design and optimization, A Wiley-Interscience Publication, New York (1996).

    Google Scholar 

  28. Y. H. Oh, I.Y. Eom, J. C. Joo, J. H. Yu, B. K. Song, S. H. Lee, S.H. Hong and S. J. Park, Korean J. Chem. Eng., 32, 1945 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changkyoo Yoo.

Additional information

The first, second, and third authors contributed equally to this research paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Kim, D., Esfahani, I.J. et al. Performance assessment and system optimization of a combined cycle power plant (CCPP) based on exergoeconomic and exergoenvironmental analyses. Korean J. Chem. Eng. 34, 6–19 (2017). https://doi.org/10.1007/s11814-016-0276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0276-2

Keywords

Navigation