Skip to main content
Log in

A new polymeric additive as asphaltene deposition inhibitor in CO2 core flooding

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new synthesized polymeric inhibitor (SPI) based on the poly-alkyl phenol formaldehyde and polyamine was introduced as asphaltene deposition inhibitor. A Turbiscan apparatus was used to investigate the stability of precipitated asphaltene in crude oil solutions by adding different concentrations of the SPI. The results of turbidity showed that the SPI could delay the asphaltene deposition and provide high stability of precipitated asphaltene in oil solutions. Then two dynamic experiments, including co-injection of crude oil and CO2 into a sandstone core, were conducted with and without the use of 500 mg/L SPI at 173 bar and 50 °C. The permeability ratio and asphaltene content remained relatively unchanged throughout the core flooding with the use of SPI, which indicated increase of the asphaltene stability in the core sample. However, the permeability ratio and outlet asphaltene content in dynamic experiment without the use of SPI decreased by about 70% and 51%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Narayan and B. Walsh, Fuel, 67, 215 (1988).

    Article  CAS  Google Scholar 

  2. X. Wang and Y. Gu, Ind. Eng. Chem. Res., 50, 2388 (2011).

    Article  CAS  Google Scholar 

  3. K. Babu, N. Pal, V.K. Saxena and A. Mandal, Korean J. Chem. Eng., 33, 711 (2016).

    Article  CAS  Google Scholar 

  4. M. S. Benzagouta, I. M. AlNashef, W. Karnanda and K. Al-Khidir, Korean J. Chem. Eng., 30, 2108 (2013).

    Article  CAS  Google Scholar 

  5. H. Son, H. Kim, G. Lee, J. Kim and W. Sung, Korean J. Chem. Eng., 31, 338 (2014).

    Article  CAS  Google Scholar 

  6. S. Kwon and W. Lee, Korean J. Chem. Eng., 29, 750 (2012).

    Article  CAS  Google Scholar 

  7. P. Zanganeh, S. Ayatollahi, A. Alamdari, A. Zolghadr, H. Dashti and S. Kord, Energy Fuels, 26, 1412 (2012).

    Article  CAS  Google Scholar 

  8. D. Borton, D. S. Pinkston, M.R. Hurt, X. Tan, K. Azyat, A. Scherer, R. Tykwinski, M. Gray, K. Qian and H. I. Kenttämaa, Energy Fuels, 24, 5548 (2010).

    Article  CAS  Google Scholar 

  9. J. S. Buckley and J. Wang, J. Petrol. Sci. Eng., 33, 195 (2002).

    Article  CAS  Google Scholar 

  10. C.-L. Chang and H. S. Fogler, Langmuir, 10, 1749 (1994).

    Article  CAS  Google Scholar 

  11. T.A. Al-Sahhaf, M. A. Fahim and A. S. Elkilani, Fluid Phase Equilib., 194, 1045 (2002).

    Article  Google Scholar 

  12. I.H. Auflem, T. Havre and J. Sjöblom, Colloid. Polym. Sci., 280, 695 (2002).

    Article  CAS  Google Scholar 

  13. L.C.R. Junior, M.S. Ferreira and A.C. da Silva Ramos, J. Petrol. Sci. Eng., 51, 26 (2006).

    Article  Google Scholar 

  14. L. Goual, M. Sedghi, X. Wang and Z. Zhu, Langmuir, 30, 5394 (2014).

    Article  CAS  Google Scholar 

  15. M. Boukherissa, F. Mutelet, A. Modarressi, A. Dicko, D. Dafri and M. Rogalski, Energy Fuels, 23, 2557 (2009).

    Article  CAS  Google Scholar 

  16. W.K. Stephenson, B.D. Mercer and D. G. Comer, US Patent, 5143594 A (1992).

  17. D. Miller, M. Feustel, A. Vollmer, R. Vybiral and D. Hoffmann, US Patent, 6180683 B1 (2001).

  18. P.J.Breen, US Patent, 6313367 B1 (2001).

  19. M. F. Wilkes and M. C.U. S. Davies, Patent Application, 2008/0096772 (2008).

    Google Scholar 

  20. Y.-F. Hu and T.-M. Guo, Langmuir, 21, 8168 (2005).

    Article  CAS  Google Scholar 

  21. M. Karambeigi and R. Kharrat, Pet. Sci. Technol., 32, 1327 (2014).

    Article  CAS  Google Scholar 

  22. H. H. Ibrahim and R.O. Idem, Energy Fuels, 18, 743 (2004).

    Article  CAS  Google Scholar 

  23. L.A. Alcázar-Vara, L. S. Zamudio-Rivera, E. Buenrostro-González, R. Hernández-Altamirano, V.Y. Mena-Cervantes and J. F. Ramírez-Pérez, Ind. Eng. Chem. Res., 54, 2868 (2015).

    Article  Google Scholar 

  24. S. Ghazvini, M. Omidkhah Nasrin and M. Nikazar, J. Oil Gas Petrochem. Technol., 1, 57 (2014).

    Google Scholar 

  25. S. I. Hashemi, B. Fazelabdolabadi, S. Moradi, A. M. Rashidi, A. Shahrabadi and H. Bagherzadeh, Appl Nanosci., 6, 71 (2016).

    Article  CAS  Google Scholar 

  26. Standard Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum and Petroleum Products, ASTMD6560-00 (2005).

  27. K. Kraiwattanawong, H. S. Fogler, S. G. Gharfeh, P. Singh, W. H. Thomason and S. Chavadej, Energy Fuels, 23, 1575 (2009).

    Article  CAS  Google Scholar 

  28. J. Pereira, J. Delgado-Linares, A. Briones, M. Guevara, C. Scorzza and J.-L. Salager, Pet. Sci. Technol., 29, 2432 (2011).

    Article  CAS  Google Scholar 

  29. Standard Test Method for Measuring n-Heptane Induced Phase Separation of Asphaltene-Containing Heavy Fuel Oils as Separability Number by an Optical Scanning Device, ASTMD7061-12 (2012).

  30. R.B. Alston, G.P. Kokolis and C.F. James, Soc. Petrol. Eng. J., 25, 268 (1985).

    Article  CAS  Google Scholar 

  31. P. Bahrami, R. Kharrat, S. Mahdavi, Y. Ahmadi and L. James, Korean J. Chem. Eng., 32, 316 (2015).

    Article  CAS  Google Scholar 

  32. M. Bagheri, R. Kharrat and C. Ghotby, Oil Gas Sci. Technol., 66, 507 (2011).

    Article  CAS  Google Scholar 

  33. A. Tóth, K. Szentmihályi, Z. Keresztes, I. Szigyártó, D. Kovácik, M. Cernák and K. Kutasi, Open Chem., 13, 557 (2015).

    Google Scholar 

  34. H. Jiang, X. Sun, M. Huang, Y. Wang, D. Li and S. Dong, Langmuir, 22, 3358 (2006).

    Article  CAS  Google Scholar 

  35. M. J. Iglesias, A. Jiménez, F. Laggoun-Défarge and I. Suarez-Ruiz, Energy Fuels, 9, 458 (1995).

    Article  CAS  Google Scholar 

  36. R. Bodirlau, C.A. Teaca and I. Spiridon, BioResources, 4, 1285 (2009).

    CAS  Google Scholar 

  37. N. I. Papadimitriou, G.E. Romanos, G.Ch. Charalambopoulou, M.E. Kainourgiakis, F.K. Katsaros and A.K. Stubos, J. Petrol. Sci. Eng., 57, 281 (2007).

    Article  CAS  Google Scholar 

  38. H. Bagherzadeh, M. Ghazanfari, R. Kharrat and D. Rashtchian, Energy Source. Part A, 36, 591 (2014).

    Article  CAS  Google Scholar 

  39. A. Danesh, D. Krinis, G.D. Henderson and J. M. Peden, J. Petrol. Sci. Eng., 2, 167 (1989).

    Article  Google Scholar 

  40. M.A. Kelland, Production chemicals for the oil and gas industry, CRC Press (2014).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Nader Lotfollahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashefi, S., Shahrabadi, A., Lotfollahi, M.N. et al. A new polymeric additive as asphaltene deposition inhibitor in CO2 core flooding. Korean J. Chem. Eng. 33, 3273–3280 (2016). https://doi.org/10.1007/s11814-016-0199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0199-y

Keywords

Navigation