Skip to main content
Log in

Simulation of solid-liquid flows using a two-way coupled smoothed particle hydrodynamics-discrete element method model

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We introduce a coupled smoothed particle hydrodynamics-discrete element method (SPH-DEM) to describe the two-way interaction between the two phases of a solid-liquid flow. To validate the model, we simulated two test problems: a solid-liquid counter-flow in a periodic box and particle settlement. The simulations correctly predicted the dynamics, and the results showed good agreement with the theory. The developed model was then applied to simulate the slurry coagulation process to examine the coagulation efficiency. When the rotational speed exceeded the normal range, the coagulation rate decreased with time, even though the rate was high during the early stage due to the size separation effect of the particles. Given this result, overly fast stirring appears to have an adverse effect on the coagulation efficiency. The model is applicable to the design of various types of solid-liquid flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Tsuji, T. Tanaka and T. Ishida, Powder Technol., 71, 239 (1992).

    Article  CAS  Google Scholar 

  2. T. Kawaguchi, T. Tanaka and Y. Tsuji, Powder Technol., 96, 129 (1998).

    Article  CAS  Google Scholar 

  3. B. Hoomans, Chem. Eng. Sci., 51, 99 (1996).

    Article  CAS  Google Scholar 

  4. B. Hoomans, J. A. M. Kuipers and W. P. M. van Swaaij, Powder Technol., 109, 41 (2000).

    Article  CAS  Google Scholar 

  5. B. Wang, D. L. Xu, K. W. Chu and A. B. Yu, Appl. Math. Model., 30, 1326 (2006).

    Article  Google Scholar 

  6. M. Lungu, J. Sun, J. Wang, Z. Zhu and Y. Yang, Korean J. Chem. Eng., 31, 1148 (2014).

    Article  CAS  Google Scholar 

  7. L. B. Lucy, The Astronomical J., 82, 1013 (1977).

    Article  Google Scholar 

  8. R. A. Gingold and J. J. Monaghan, Mon. Not. R. Astron. Soc., 181, 375 (1977).

    Article  Google Scholar 

  9. A. V. Potapov, M. L. Hunt and C. S. Campbell, Powder Technol., 116, 204 (2001).

    Article  CAS  Google Scholar 

  10. P. W. Cleary, M. Sinnot and R. Morrison, Miner. Eng., 19, 1517 (2006).

    Article  CAS  Google Scholar 

  11. M. Robinson, S. Luding and M. Ramaioli, Int. J. Multiph. Flow, 59, 121 (2013).

    Article  Google Scholar 

  12. T. B. Anderson and R. Jackson, Ind. Eng. Chem. Fundam., 6, 527 (1967).

    Article  CAS  Google Scholar 

  13. F. H. Harlow and A. A. Amsden, J. Comput. Phys., 17, 19 (1975).

    Article  Google Scholar 

  14. F. H. Harlow and A. A. Amsden, J. Comput. Phys., 18, 440 (1975).

    Article  Google Scholar 

  15. J. J. Monaghan, Report on Progress in Physics, 6, 1703 (2005).

    Article  Google Scholar 

  16. A. Misra and J. Cheung, Powder Technol., 105, 222 (1999).

    Article  CAS  Google Scholar 

  17. D. Gidaspow, Multiphase flow and fluidization: Continuum and Kinetic Theory Description, Academic Press, San Diego (1994).

    Google Scholar 

  18. R. M. Olson, Essentials of Engineering Fluid Mechanics, International Textbook Company, Scranton, Pennsylvania (1960).

    Google Scholar 

  19. J. J. Monaghan, J. Comput. Phys., 138, 801 (1997).

    Article  Google Scholar 

  20. M. V. Smoluchowski, Zeitschrift für Physikalische Chemie, 92, 129 (1917).

    Google Scholar 

  21. N. Fuchs, Z. Phys. Chem., 89, 736 (1934).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihoe Kwon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, J., Cho, H. Simulation of solid-liquid flows using a two-way coupled smoothed particle hydrodynamics-discrete element method model. Korean J. Chem. Eng. 33, 2830–2841 (2016). https://doi.org/10.1007/s11814-016-0193-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0193-4

Keywords

Navigation