Skip to main content
Log in

Optimization of operating conditions in the purification of graphite oxide dispersions

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In the graphite oxide (GO) suspension purification process, some metallic impurities in GO cannot be separated. The residual metallic impurities dominate graphite oxide properties and have a negative influence on applications. Therefore, the removal of metallic impurities from graphite oxide has been brought into focus now. Single factor experiments and orthogonal experiments are used to get the optimal purification condition. The results show that purification agent, temperature, stirring intensity and contact time affect the purification degree, and the purification agent is the most important element for the purification efficiency. The optimal purification condition is 10% hydrochloric acid (H10), 20 °C, 0 rpm and 60 min. Besides, the theoretical stage is calculated by the mass conservation equation and distribution balance equation and the minimum stage is 3 under the optimal purification condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. C. Brodie, J. Franklin. I., 59, 420 (1855).

    Google Scholar 

  2. I. R. Mar and G. J. Valer, Carbon, 24, 163 (1986).

    Article  Google Scholar 

  3. W. S. Hummers and R. E. Hoffman, J. Am. Chem. Soc., 80, 1339 (1958).

    Article  CAS  Google Scholar 

  4. M. J. Hudson, F. R. Hunter and J. W. Peckett, J. Mater. Chem., 7, 301 (1997).

    Article  CAS  Google Scholar 

  5. A. Adriano, Y. C. Sze, K. Bahareh, D. W. Richard, S. Zdene and P. Martin, Angew. Chem. Int. Edit., 51, 500 (2012).

    Article  Google Scholar 

  6. J. A. Matthew, C. T. Vincent and B. K. Richard, Chem. Rev., 110, 132 (2010).

    Article  Google Scholar 

  7. S. W. Kim and H. M. Choi, Korean J. Chem. Eng., 33, 330 (2016).

    Article  CAS  Google Scholar 

  8. J. A. Rogers, Nat. Nanotechnol., 3, 254 (2008).

    Article  CAS  Google Scholar 

  9. M. Pumera, Chem. Soc. Rev., 39, 4146 (2010).

    Article  CAS  Google Scholar 

  10. A. Ambrosi and M. Pumera, Chem. Eur. J., 16, 1786 (2010).

    Article  CAS  Google Scholar 

  11. L. Guo, D. G. Morris, X. Y. Liu, C. Vaslet, R. H. Hurt and A. B. Kane, Chem. Mater., 19, 3472 (2007).

    Article  CAS  Google Scholar 

  12. X. L. Tian, S. Zhou, Z. Y. Zhang, X. He, M. J. Yu and D. H. Lin, Environ. Sci. Technol., 44, 8144 (2010).

    Article  CAS  Google Scholar 

  13. S. Koyama, Y. A. Kim, T. Hayashi, K. Takeuchi, C. Fujii, N. Kuroiwa, H. Koyama, T. Tsukahara and M Endo, Carbon, 47, 1365 (2009).

    Article  CAS  Google Scholar 

  14. S. L. Buchwald and C. Bolm, Angew. Chem., 121, 5694 (2009).

    Article  Google Scholar 

  15. M. Pumera and Y. Miyahara, Nanoscale, 1, 260 (2009).

    Article  CAS  Google Scholar 

  16. G. Zhao, J. Li, X. Ren, C. Chen and X. Wang, Environ. Sci. Technol., 45, 10454 (2011).

    Article  CAS  Google Scholar 

  17. W. Jia and S. Lu, Korean J. Chem. Eng., 31, 1265 (2014).

    Article  CAS  Google Scholar 

  18. M. A. Atieh, O. Y. Bakather, B. S. Tawabini, A. A. Bukhari, M. Khaled, M. Alharthi, M. Fettouhi and F. A. Abuilaiwi, J. Nanomater, 210, 9. (2010).

    Google Scholar 

  19. M. Machida, T. Mochimaru and H. Tatsumoto, Carbon, 44, 2681, (2006).

    Article  CAS  Google Scholar 

  20. J. H. Liao, Y. Zhang, W. Yu, L. N. Xu, C. W. Ge, J. H. Liu and N. Gu, Colloids Surf., A, 223, 177 (2003).

    Article  CAS  Google Scholar 

  21. P. Galletto, P. F. Brevet and H. H. Girault, J. Phys. Chem. B., 103, 8706 (1999).

    Article  CAS  Google Scholar 

  22. Y. Bian, Z. Y. Bian, J. X. Zhang, A. Z. Ding, S. L. Liu and H. Wang, Appl. Surf. Sci., 329, 269 (2015).

    Article  CAS  Google Scholar 

  23. Y. Li, C. L. Wang, Z. J. Guo, C. L. Liu and W. S. Wu, J. Radioanal. Nucl. Chem., 299, 1683 (2014).

    Article  CAS  Google Scholar 

  24. C. H. Chen, Q. H. Yang, Y. G. Yang, W. Lv, Y. F. Wen, P. X. Hou, M. Z. Wang and H. M. Cheng, Adv. Mater., 21, 3007 (2009).

    Article  CAS  Google Scholar 

  25. K. H. Ryu, C. Lee, G. G. Lee, S. Jo and W. S. Su, Korean J. Chem. Eng., 30, 1946 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guorui Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, W., Liu, Y., Liu, L. et al. Optimization of operating conditions in the purification of graphite oxide dispersions. Korean J. Chem. Eng. 33, 3251–3257 (2016). https://doi.org/10.1007/s11814-016-0164-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0164-9

Keywords

Navigation