Skip to main content
Log in

Optimal conditions for recovering boron from seawater using boron selective resins

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We determined the optimal conditions for efficient recovery of boron from seawater using boron selective resins (BSRs). A commercialized BSR named CRB05 was adopted and prepared in two particle sizes: A fine-particulate BSR (effective particle size of 105 μm) and a coarse-particulate BSR (effective particle size of 445 μm). The performance of the two BSRs was compared in terms of boron adsorption, boron desorption, and BSR regeneration and reusability. During boron adsorption, for fine BSR, optimal reaction time, stirring speed and the amount of BSR needed for the adsorption of boron were 30 min, 150 rpm and 1 g-BSR/L respectively, whereas for coarse BSR, values of the above parameters were 300 min, 150 rpm and 3 g-BSR/L. It indicates that the fine BSR can adsorb boron about threetimes more than the coarse BSR. It also shows that the reaction rate of the fine BSR is almost ten-times higher than that of the coarse BSR. During the boron desorption, no significant difference was found between the efficiencies exhibited by the fine and the coarse BSRs. The best desorption performance can be attained with 11.9 mL/mg-B of 0.05 M H2SO4 and 15.9mL/mg-B of 0.25M HCl, regardless of the particle size of the BSR. Finally, the boron adsorption efficiency can be maintained at a stable level even after reusing the BSRs over ten times. The present study shows a possibility to recover boron with better efficiency from seawater in short time using the fine BSR, rather than the coarse BSR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roskill, Boron: Global Industry Markets and Outlook, Roskill Information Services Ltd., London (2010).

  2. N. Kabay, I. Yilmaz, S. Yamac, M. Yuksel, U. Yuksel, N. Yildirim, O. Aydogdu, T. Iwanaga and K. Hirowatari, Desalination, 167, 427 (2004).

    Article  CAS  Google Scholar 

  3. N. Kabay, S. Sarp, M. Yuksel, O. Arar and M. Bryjak, React. Funct. Polym., 67, 1643 (2007).

    Article  CAS  Google Scholar 

  4. H. Parschova, E. Mistova, Z. Matejka, L. Jelinek, N. Kabay and P. Kauppinen, React. Funct. Polym., 67, 1622 (2007).

    Article  CAS  Google Scholar 

  5. N. Kabay, M. Bryjak, S. Schlosser, M. Kitis, S. Avlonitis, Z. Matejka, I. Al-Mutaz and M. Yuksel, Desalination, 223, 38 (2008).

    Article  CAS  Google Scholar 

  6. C. Yan, W. Yi, P. Ma, X. Deng and F. Li, J. Hazard. Mater., 154, 564 (2008).

    Article  CAS  Google Scholar 

  7. M. F. Chillon Arias, L. V. Bru, D. Prats Rico and P. Varo Galvan, Desalination, 273, 421 (2011).

    Article  CAS  Google Scholar 

  8. R. Boncukcuoglu, A. E. Yilmaz, M. M. Kocakerim and M. Copur, Desalination, 160, 159 (2004).

    Article  CAS  Google Scholar 

  9. I. Yilmaz, N. Kabay, M. Yuksel, O. Kirmizisakal and M. Bryjak, Chem. Eng. Commun., 196, 277 (2009).

    Google Scholar 

  10. M. Ozdemir and I. Kipcak, Miner. Eng., 23, 685 (2010).

    Article  Google Scholar 

  11. C. Irawan, Y. L. Kuo and J. C. Liu, Desalination, 280, 146 (2011).

    Article  CAS  Google Scholar 

  12. E. Yoshikawa, A. Sasaki and M. Endo, J. Hazard. Mater., 237-238, 277 (2012).

    Article  CAS  Google Scholar 

  13. P. Santander, B. L. Rivas, B. F. Urbano, I. Y. Ipek, G. Ozkula, M. Arda, M. Yuksel, M. Bryjak, T. Kozlecki and N. Kabay, Desalination, 310, 102 (2013).

    Article  CAS  Google Scholar 

  14. N. Bicak, N. Bulutcu, B. F. Senkal and M. Gazi, React. Funct. Polym., 47, 175 (2001).

    Article  CAS  Google Scholar 

  15. N. Hilal, G. J. Kim and C. Somerfield, Desalination, 273, 23 (2011).

    Article  CAS  Google Scholar 

  16. C. Marston, M. Busch and S. Prabhakaran, Proceedings of European Desalination Society Conference on Desalination and Environment, Santa Margherita Ligure, Italy, 22 (2005).

    Google Scholar 

  17. F. T. Bingham, in Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Madison, WI, USA (1982).

    Google Scholar 

  18. J. Wright and A. Colling, Seawater: Its Composition, Properties and Behavior, Butterworth-Heinemann, Oxford, U. K. (2007).

    Google Scholar 

  19. N. Kabay, E. Guler and M. Bryjak, Desalination, 261, 212 (2010).

    Article  CAS  Google Scholar 

  20. N. Nadav, Desalination, 124, 131 (1999).

    Article  CAS  Google Scholar 

  21. T. E. Kose and N. Ozturk, J. Hazard. Mater., 152, 744 (2008).

    Article  Google Scholar 

  22. M. O. Simonnot, C. Castel, M. Nicolai, C. Rosin, M. Sardin and H. Jauddret, Water Res., 34, 109 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S., Kim, MJ. Optimal conditions for recovering boron from seawater using boron selective resins. Korean J. Chem. Eng. 33, 2411–2417 (2016). https://doi.org/10.1007/s11814-016-0096-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0096-4

Keywords

Navigation