Skip to main content

Advertisement

Log in

Phase behavior of gas hydrates in nanoporous materials: Review

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A precise understanding of phase behavior for a variety of both artificial and natural processes is essential to achieving scientific and technological goals. There has been growing research interest in gas hydrates confined in nanoporous media aiming to simulate and analyze the unique behavior of natural gas hydrates in sediments. Moreover, the appearance of peculiar properties due to the confinement effect stimulates research on gas hydrate technology for gas separation, such as CO2 capture from versatile pre/post combustion emissions. In spite of their importance, reliable phase equilibrium data on gas hydrates confined at a nanoscale are scattered throughout the literature, while those in bulk state are abundant. Accordingly, we surveyed the previous studies on the phase behavior of gas hydrates in various nanoporous materials to include and provide valuable information and knowledge for start-up researchers in various gas hydrate fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Davy, Phil. Trans. Roy. Soc., 101, 155, (1811).

    Article  Google Scholar 

  2. T. A. Strobel, C. A. Koh and E. D. Sloan, Fluid Phase Equilib., 261(1-2), 382 (2007).

    Article  CAS  Google Scholar 

  3. S. H. Yeon, J. Seol, Y. Park, D. Y. Koh, Y. S. Kang and H. Lee, J. Am. Chem. Soc., 13029, 9208, (2008).

    Article  CAS  Google Scholar 

  4. J. H. Cha, W. Lee and H. Lee, J. Mater. Chem., 1936, 6542, (2009).

    Article  CAS  Google Scholar 

  5. M. D. Max, V. T. John and R. E. Pellenbarg, Ann. N. Y. Acad. Sci., 912, 460, (2000).

    Article  CAS  Google Scholar 

  6. H. Lee, J. W. Lee, D. Y. Kim, J. Park, Y. T. Seo, H. Zeng, I. L. Moudrakovski, C. I. Ratcliffe and J. A. Ripmeester, Nature, 4347034, 743, (2005).

    Article  CAS  Google Scholar 

  7. D. Y. Kim, Y. Park and H. Lee, Catal. Today, 120(3-4), 257 (2007).

    Article  Google Scholar 

  8. J. Y. Lee, B. J. Ryu, T. S. Yun, J. Lee and G. C. Cho, Ksce J. Civ. Eng., 154, 689, (2011).

    Article  Google Scholar 

  9. O. Urdahl, A. Lund, P. Mork and T. N. Nilsen, Chem. Eng. Sci., 50(5), 863 (1995).

    Article  CAS  Google Scholar 

  10. J. D. Lee and P. Englezos, Chem. Eng. Sci., 615, 1368, (2006).

    Article  CAS  Google Scholar 

  11. S. H. Yeon, J. Seol, D. Y. Koh, Y. J. Seo, K. Park, D. G. Huh, J. Lee and H. Lee, Energy Environ. Sci., 42, 421, (2011).

    Article  CAS  Google Scholar 

  12. Y. T. Seo, I. L. Moudrakovski, J. A. Ripmeester, J. W. Lee and H. Lee, Environ. Sci. Technol., 39(7), 2315 (2005).

    Article  CAS  Google Scholar 

  13. T. Uchida, S. Takeya, E. M. Chuvilin, R. Ohmura, J. Nagao, V. S. Yakushev, V. A. Istomin, H. Minagawa, T. Ebinuma and H. Narita, J. Geophys. Res.: Solid Earth, 109, B05206 (2004).

    Article  Google Scholar 

  14. B. Tohidi, R. W. Burgass, A. Danesh, K. K. Ostergaard and A. C. Todd, Ann. N. Y. Acad. Sci., 912, 924, (2000).

    Article  CAS  Google Scholar 

  15. Y. Seo and H. Lee, J. Phys. Chem. B, 1073, 889, (2003).

    Article  CAS  Google Scholar 

  16. Y. P. Handa and D. Stupin, J. Phys. Chem., 9621, 8599, (1992).

    Article  CAS  Google Scholar 

  17. T. Uchida, T. Ebinuma and T. Ishizaki, J. Phys. Chem. B, 10318, 3659, (1999).

    Article  CAS  Google Scholar 

  18. K. Seshadri, J. W. Wilder and D. H. Smith, J. Phys. Chem. B, 10513, 2627, (2001).

    Article  CAS  Google Scholar 

  19. J. W. Wilder and D. H. Smith, Ind. Eng. Chem. Res., 4111, 2819, (2002).

    Article  CAS  Google Scholar 

  20. W. Zhang, J. W. Wilder and D. H. Smith, AIChE J., 4810, 2324, (2002).

    Article  CAS  Google Scholar 

  21. J. W. Wilder and D. H. Smith, Chem. Eng. Sci., 5918, 3945, (2004).

    Article  CAS  Google Scholar 

  22. J. B. Klauda and S. I. Sandler, Ind. Eng. Chem. Res., 4020, 4197, (2001).

    Article  CAS  Google Scholar 

  23. Y. Seo, H. Lee and T. Uchida, Langmuir, 1824, 9164, (2002).

    Article  CAS  Google Scholar 

  24. R. Anderson, M. Llamedo, B. Tohidi and R. W. Burgass, J. Phys. Chem. B, 10715, 3500, (2003).

    Article  CAS  Google Scholar 

  25. R. Anderson, M. Llamedo, B. Tohidi and R. W. Burgass, J. Phys. Chem. B, 10715, 3507, (2003).

    Article  CAS  Google Scholar 

  26. S. P. Kang, J. W. Lee and H. J. Ryu, Fluid Phase Equilib., 274(1-2), 68 (2008).

    Article  CAS  Google Scholar 

  27. Y. Seo, S. Lee, I. Cha, J. D. Lee and H. Lee, J. Phys. Chem. B., 11316, 5487, (2009).

    Article  CAS  Google Scholar 

  28. S. Lee and Y. Seo, Energy Fuels, 24, 6074, (2010).

    Article  CAS  Google Scholar 

  29. S. Lee and Y. Seo, Langmuir, 2612, 9742, (2010).

    Article  CAS  Google Scholar 

  30. S. Lee, I. Cha and Y. Seo, J. Phys. Chem. B, 11446, 15079, (2010).

    Article  CAS  Google Scholar 

  31. Y. T. Seo, I. L. Moudrakovski, J. A. Ripmeester, J. W. Lee and H. Lee, Environ. Sci. Technol., 397, 2315, (2005).

    Article  CAS  Google Scholar 

  32. S. Park, S. Lee, Y. Lee, Y. Lee and Y. Seo, Int. J. Greenhouse. Gas Control, 14, 193, (2013).

    Article  CAS  Google Scholar 

  33. S. P. Kang, W. Jang and Y. Seo, Abstracts of Papers of the American Chemical Society, 239, 101–IEC (2010).

    Google Scholar 

  34. A. Eslamimanesh, A. H. Mohammadi, D. Richon, P. Naidoo and D. Ramjugernath, J. Chem. Thermodyn., 46, 62, (2012).

    Article  CAS  Google Scholar 

  35. Y. Song, X. Wan, M. Yang, L. Jiang, Y. Liu, B. Dou, J. Zhao and S. Wang, Energy Fuels, 276, 3341, (2013).

    Article  CAS  Google Scholar 

  36. P. Babu, P. Linga, R. Kumar and P. Englezos, Energy, 85, 261, (2015).

    Article  CAS  Google Scholar 

  37. Y. R. Lee, J. Kim and W. S. Ahn, Korean J. Chem. Eng., 309, 1667, (2013).

    Article  CAS  Google Scholar 

  38. D. Kim, H.-K. Lim, H. Ro, H. Kim and H. Lee, Chem. - Eur. J., 213, 1125, (2015).

    Article  CAS  Google Scholar 

  39. S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen and I. D. Williams, Science, 2835405, 1148, (1999).

    Article  CAS  Google Scholar 

  40. A. Buchsteiner, A. Lerf and J. Pieper, J. Phys. Chem. B., 11045, 22328, (2006).

    Article  CAS  Google Scholar 

  41. D. Kim, D. W. Kim, H. K. Lim, J. Jeon, H. Kim, H. T. Jung and H. Lee, J. Phys. Chem. C, 11820, 11142, (2014).

    Article  CAS  Google Scholar 

  42. D. Kim, D. W. Kim, H. K. Lim, J. Jeon, H. Kim, H. T. Jung and H. Lee, Phys. Chem. Chem. Phys., 1641, 22717, (2014).

    Article  CAS  Google Scholar 

  43. D. Kim, Y.-H. Ahn and H. Lee, J. Chem. Eng. Data, 60, 2178, (2015).

    Article  CAS  Google Scholar 

  44. K. Norrish, Discuss. Faraday Soc., 18, 120, (1954).

    Article  CAS  Google Scholar 

  45. S. Guggenheim and A. F. K. van Groos, Geology, 317, 653, (2003).

    Article  CAS  Google Scholar 

  46. D. Kim, Y. H. Ahn, S. J. Kim, J. Y. Lee, J. Lee, Y. J. Seo and H. Lee, J. Phys. Chem. C, 11938, 22148, (2015).

    Article  CAS  Google Scholar 

  47. T. Uchida, T. Ebinuma, S. Takeya, J. Nagao and H. Narita, J. Phys. Chem. B, 1064, 820, (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huen Lee.

Additional information

Huen Lee is a Professor in the Department of Chemical and Biomolecular Engineering at the Korea Advanced Institute of Science and Technology in Korea. He received his Ph.D. degree in Chemical Engineering from Northwestern University in 1983. He has endeavored to investigate the scientific perspectives of gas hydrates such as hydratebased gas capture and separation, hydrogen storage, electrochemical sensors, tuning phenomenon, and some key issues on inclusion chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Lee, H. Phase behavior of gas hydrates in nanoporous materials: Review. Korean J. Chem. Eng. 33, 1977–1988 (2016). https://doi.org/10.1007/s11814-016-0064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0064-z

Keywords

Navigation