Skip to main content
Log in

Improving the tensile strength of carbon nanotube yarn via one-step double [2+1] cycloadditions

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The tensile strength of a CNT yarn was improved through simple one-step double [2+1] cycloaddition reactions that crosslinked the constituent CNTs using a polyethylene glycol (PEG)-diazide crosslinker. The FT-IR spectrum confirmed that the azide groups in the PEG-diazide were converted into aziridine rings, indicating that the cycloaddition reaction was successful. The generation of crosslinked CNTs was also supported by the observation of N1s peak in the XPS spectrum and the increased thermal stability of the material, as observed by TGA. The tensile strength of the CNT yarn was increased from 0.2GPa to 1.4GPa after the crosslinking reaction when twisted at 4000 twists/ meter. The appropriate selection of the crosslinker may further optimize the CNT yarn crosslinking reaction. The simplicity of this one-step crosslinking reaction provides an economical approach to the mass production of high-strength CNT yarns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Lan, Y. Wang and Z. F. Ren, Adv. Phys., 60, 553 (2011).

    Article  CAS  Google Scholar 

  2. M. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Ruoff, Science, 287, 637 (2000).

    Article  CAS  Google Scholar 

  3. J. Park and K.-H. Lee, Korean J. Chem. Eng., 29, 277 (2012).

    Article  CAS  Google Scholar 

  4. B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier and P. Poulin, Science, 290, 1331 (2000).

    Article  CAS  Google Scholar 

  5. K. L. Jiang, Q. Q. Li and S. S. Fan, Nature, 419, 801 (2002).

    Article  CAS  Google Scholar 

  6. Y. L. Li, I. A. Kinloch and A. H. Windle, Science, 304, 276 (2004).

    Article  CAS  Google Scholar 

  7. K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett and A. Windle, Science, 318, 1892 (2007).

    Article  CAS  Google Scholar 

  8. W. B. Lu, M. Zu, J. H. Byun, B. S. Kim and T. W. Chou, Adv. Mater., 24, 1805 (2012).

    Article  CAS  Google Scholar 

  9. K. Liu, Y. Sun, R. Zhou, H. Zhu, J. Wang, L. Liu, S. Fan and K. Jiang, Nanotechnology, 21, 045708 (2010).

    Article  CAS  Google Scholar 

  10. C. D. Tran, W. Humphries, S. M. Smith, C. Huynh and S. Lucas, Carbon, 47, 2662 (2009).

    Article  CAS  Google Scholar 

  11. K. Liu, Y. Sun, X. Lin, R. Zhou, J. Wang, S. Fan and K. Jiang, Acs Nano, 4, 5827 (2010).

    Article  CAS  Google Scholar 

  12. S. Ryu, Y. Lee, J. W. Hwang, S. Hong, C. Kim, T. G. Park, H. Lee and S. H. Hong, Adv. Mater., 23, 1971 (2011).

    Article  CAS  Google Scholar 

  13. M. Zhang, K. R. Atkinson and R. H. Baughman, Science, 306, 1358 (2004).

    Article  CAS  Google Scholar 

  14. A. B. Dalton, S. Collins, E. Muñoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim and R. H. Baughman, Nature, 423, 703 (2003).

    Article  CAS  Google Scholar 

  15. W. Ma, L. Liu, Z. Zhang, R. Yang, G. Liu, T. Zhang, X. An, X. Yi, Y. Ren, Z. Niu, J. Li, H. Dong, W. Zhou, P. M. Ajayan and S. Xie, Nano Lett., 9, 2855 (2009).

    Article  CAS  Google Scholar 

  16. M. Zhang, K. R. Atkinson and R. H. Baughman, Science, 306, 1358 (2004).

    Article  CAS  Google Scholar 

  17. J. Min, J. Y. Cai, M. Sridhar, C. D. Easton, T. R. Gengenbach, J. McDonnell, W. Humphries and S. Lucas, Carbon, 52, 520 (2013).

    Article  CAS  Google Scholar 

  18. J. Lee, E. Oh, H.-J. Kim, S. Cho, T. Kim, S. Lee, J. Park, H. J. Kim and K.-H. Lee, J. Mater. Sci., 48, 6897 (2013).

    Article  CAS  Google Scholar 

  19. M. Holzinger, J. Steinmetz, D. Samaille, M. Glerup, M. Paillet, P. Bernier, L. Ley and R. Graupner, Carbon, 42, 941 (2004).

    Article  CAS  Google Scholar 

  20. S. Banerjee, T. Hemraj-Benny and S. S. Wong, Adv. Mater., 17, 17 (2005).

    Article  CAS  Google Scholar 

  21. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Wiley, Chichester, New York (2004).

    Google Scholar 

  22. H. Leinonen, J. Rintala, A. Siitonen, M. Lajunen and M. Pettersson, Carbon, 48, 2425 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Hong Lee.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Lee, J., Park, B. et al. Improving the tensile strength of carbon nanotube yarn via one-step double [2+1] cycloadditions. Korean J. Chem. Eng. 33, 299–304 (2016). https://doi.org/10.1007/s11814-015-0140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0140-9

Keywords

Navigation