Skip to main content
Log in

A novel sintered metal fiber microfiltration of bio-ethanol fermentation broth

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In bio-ethanol fermentation, the broth consists of mainly water and ethanol, together with particulate residues of unreacted feedstock and additives (mostly yeast). Prior to further processing (distillation), and to avoid fouling of heat exchangers and distillation columns, the solids residues of the broth need to be removed to as low a concentration as possible. The current mechanical separation (belt filter or centrifuge) can only remove +10 μm particles representing about 90% of the total solids content. The remaining 10% is usually recovered in the bottom stream of the first distillation column, and forms the stillage that is further treated. To avoid fouling and even eliminate the first distillation column where the ethanol fraction is only increased from 12% (feed) to 16% (top), a better particulate removal is required. Novel sintered metal fiber (SFM) fleeces are highly efficient for microfiltration, and the removal of suspended solids largely exceeds 99%. The paper (i) positions microfiltration in the overall bio ethanol process; (ii) describes the novel sintered metal fiber microfiltration application; (iii) experimentally determines the major operating characteristics of SFM and (iv) predicts the up-scaled operation by using a simplified filtration model. At an ambient feed temperature, the flux of permeate exceeds 5m3/m2h for a TMP of 1.5 bar and a yeast concentration of 15 g/l, as commonly encountered in the fermenter broth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Amarasekara, Handbook of Cellulosic Ethanol, Wiley, New Jersey and Scrivener Publishing LLC, Massachusetts (2014).

    Google Scholar 

  2. Lurgi, Retrieved from http://gep-france.com/biocarb/Bioethanol-Lurgi.pdf (11/05/2014).

  3. H. L. Zhang, J. Baeyens and T.W. Tan, Energy, 48, 380 (2012).

    Article  CAS  Google Scholar 

  4. H. L. Zhang, J. Baeyens and T.W. Tan, Chem. Eng. Res. Des., 90, 2122 (2012).

    Article  CAS  Google Scholar 

  5. G.W. Choi, H.W. Kang, Y.R. Kim and B.W. Chung, Biotechnol. Bioproc. Eng., 13, 765 (2008).

    Article  CAS  Google Scholar 

  6. P. Wei, L. H. Cheng, L. Zhang, X. H. Xu, H. L. Chen and C. J. Cao, Renew. Sust. Energy Rev., 30, 388 (2014).

    Article  CAS  Google Scholar 

  7. J. B. Castaing, A. Massé, V. Séchet, N. E. Sabiri, M. Pontié, J. Haure and P. Jaouen, Desalination, 276, 386 (2011).

    Article  CAS  Google Scholar 

  8. Q. Kang, J. Huybrechts, B. Van der Bruggen, J. Baeyens, T.W. Tan and R. Dewil, Sep. Purif. Technol., 136, 144 (2014).

    Article  CAS  Google Scholar 

  9. J. Baeyens, Q. Kang, L. Apples, R. Dewil, Y.Q. Lv and T.W. Tan, Prog. Energ. Combust. Sci. (2014), 10.1016/j.pecs.2014.10.003.

    Google Scholar 

  10. F. Lipnizki, Desalination, 250, 1067 (2010).

    Article  CAS  Google Scholar 

  11. L. Christenson and R. Sims, Biotechnol. Adv., 29, 686 (2011).

    Article  CAS  Google Scholar 

  12. L. Brennan and P. Owende, Renew. Sustain. Energy Rev., 14, 557 (2010).

    Article  CAS  Google Scholar 

  13. M. Nomura, T. Bin and S. Nakao, Sep. Purif. Technol., 27, 59 (2002).

    Article  CAS  Google Scholar 

  14. M. I. Kaseno and T. Kokugan, J. Ferment. Bioeng., 86, 488 (1998).

    Article  CAS  Google Scholar 

  15. T. Ikegami, D. Kitamoto, H. Negishi, K. Haraya, H. Matsuda, Y. Nitanai, N. Koura, T. Sano and H. Yanagishita, J. Chem. Technol. Biotechnol., 78, 1006 (2003).

    Article  CAS  Google Scholar 

  16. J.B. Haelssing, A.Y. Tremblay and J. Thibault, Chem. Eng. Sci., 68, 492 (2012).

    Article  Google Scholar 

  17. L. Aouinti and M. Belbachir, Appl. Clay. Sci., 39, 78 (2008).

    Article  CAS  Google Scholar 

  18. P. Peng, B. Shi and Y. Lan, Sep. Sci. Technol., 46, 234 (2010).

    Article  Google Scholar 

  19. I. S. Han and M. Cheryan, J. Membr. Sci., 107, 107 (1995).

    Article  CAS  Google Scholar 

  20. S. Liu, T. E. Amidon and D.C. Wood, J. Biobased. Mater. Bio., 2, 121 (2008).

    Article  Google Scholar 

  21. E. Sjöman, M. Mänttäri, M. Nyström, H. Koivikko and H. Heikkilä, J. Membr. Sci., 310, 268 (2008).

    Article  Google Scholar 

  22. B. Qi, J. Luo, X. Chen, X. Hang and Y. Wan, Bioresour. Technol., 102, 7111 (2011).

    Article  CAS  Google Scholar 

  23. F. Zhou, C. Wang and J. Wei, Bioresour. Technol., 131, 349 (2013).

    Article  CAS  Google Scholar 

  24. F. Zhou, C. Wang and J. Wei, J. Membr. Sci., 429, 243 (2013).

    Article  CAS  Google Scholar 

  25. M. Tanaka, M. Fukui and R. Matsuno, Biotechnol. Bioeng., 32, 897 (1988).

    Article  CAS  Google Scholar 

  26. J. S. Knutsen and R.H. Davis, Appl. Biochem. Biotechnol., 113–116, 585 (2004).

    Article  Google Scholar 

  27. J. Leberknight, B. Wielenga, A. Lee-Jewett and T. J. Menkhaus, J. Membr. Sci., 366, 405 (2011).

    Article  CAS  Google Scholar 

  28. Bekaert Advanced Filtration SA, Developing new media based on short metal fibres, Retrieved from www.bekaert.com/baf (11/05/2014).

    Google Scholar 

  29. K. Matsumoto, S. Katsuyama and H. Ohya, Ferment. Technol., 65, 77 (1987).

    Article  CAS  Google Scholar 

  30. G. Schulz and S. Ripperger, J. Membr. Sci., 40, 173 (1989).

    Article  CAS  Google Scholar 

  31. P. C. Carman, Trans. Inst. Chem. Eng., 50, 150 (1937).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Baeyens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Q., Baeyens, J., Tan, T. et al. A novel sintered metal fiber microfiltration of bio-ethanol fermentation broth. Korean J. Chem. Eng. 32, 1625–1633 (2015). https://doi.org/10.1007/s11814-014-0375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0375-x

Keywords

Navigation