Skip to main content

Advertisement

Log in

Computational fluid dynamics modeling and analysis of Pd-based membrane module for CO2 capture from H2/CO2 binary gas mixture

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A Pd-based membrane module for the capture of CO2 from a H2/CO2 binary gas mixture was considered, and computational fluid dynamics modeling was used to predict the module performance. Detailed models of momentum and mass balances, including local flux as a function of local linear velocity, satisfactorily described CO2 fraction in a retentate tube when compared to the experimental data under various feed flow rates. By using the model, several cases having different geometries, including the location and diameter of feed tube and the number and location of the feed and retentate tubes, were considered. Among tested geometries, the case of two feed tubes with each offset by an angle, θ, of 45° from the center line, and a feed tube diameter of 2.45mm showed the increase of the feed flow rate up to 11.80% compared to the reference case while a CO2 fraction of 90% in the retentate, which was the criterion for effective CO2 capture in the present study, was guaranteed. This would result in a plausible reduction in capital expenditures for the CO2 capture process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. D’Alessandro, B. Smit and J. R. Long, Angew. Chem. Int. Ed., 49, 6058 (2010).

    Article  Google Scholar 

  2. S.-K. Ryi, J.-S. Park, K.-R. Hwang, C.-B. Lee and S.-W. Lee, Int. J. Hydrogen Energy, 36, 13769 (2011).

    Article  CAS  Google Scholar 

  3. K.-R. Hwang, C.-B. Lee, S.-K. Ryi and J.-S. Park, Int. J. Hydrogen Energy, 37, 6626 (2012).

    Article  CAS  Google Scholar 

  4. K.-R. Hwang, S.-W. Lee, S.-K. Ryi, D.-K. Kim, T.-H. Kim and J.-S. Park, Fuel Process. Technol., 106, 133 (2013).

    Article  CAS  Google Scholar 

  5. T. A. Peters, T. Kaleta, M. Stange and R. Bredesen, J. Membr. Sci., 383, 124 (2011).

    Article  CAS  Google Scholar 

  6. C. V. Miguel, A. Mendes, S. Tosti and L. M. Madeira, Int. J. Hydrogen Energy, 37, 12680 (2012).

    Article  CAS  Google Scholar 

  7. W.-H. Chen, W.-Z. Syu, C.-I. Hung, Y.-L. Lin and C.-C. Yang, Int. J. Hydrogen Energy, 38, 1145 (2013).

    Article  CAS  Google Scholar 

  8. S.-K. Ryi, J.-S. Park, S.-H. Kim, S.-H. Cho, K.-R. Hwang, D.-W. Kim and H.-G. Kim, J. Membr. Sci., 297, 217 (2007).

    Article  CAS  Google Scholar 

  9. H. Takaba and S.-i. Nakao, J. Membr. Sci., 249, 83 (2005).

    Article  CAS  Google Scholar 

  10. A. Caravella, G. Barbieri and E. Drioli, Chem. Eng. Sci., 63, 2149 (2008).

    Article  CAS  Google Scholar 

  11. J. Choi, M.-J. Park, J. Kim, Y. Ko, S.-H. Lee and I. Baek, Korean J. Chem. Eng., 30, 1187 (2013).

    Article  CAS  Google Scholar 

  12. J. Boon, H. Li, J. W. Dijkstra and J. A. Z. Pieterse, Energy Procedia, 4, 699 (2011).

    Article  CAS  Google Scholar 

  13. M. Coroneo, G. Montante, J. Catalano and A. Paglianti, J. Membr. Sci., 343, 34 (2009).

    Article  CAS  Google Scholar 

  14. W.-H. Chen, W.-Z. Syu and C.-I. Hung, Int. J. Hydrogen Energy, 36, 14734 (2011).

    Article  CAS  Google Scholar 

  15. S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, 2nd Ed. Springer-Verlag, New York (2002).

    Book  Google Scholar 

  16. M. E. Celebi, F. Celiker and H. A. Kingravi, Pattern Recognition, 44, 278 (2011).

    Article  Google Scholar 

  17. E. N. Fuller, P. D. Schettler and J. C. Giddings, Ind. Eng. Chem., 58, 18 (1966).

    Article  CAS  Google Scholar 

  18. E. N. Fuller, K. Ensley and J. C. Giddings, J. Phys. Chem., 73, 3679 (1969).

    Article  CAS  Google Scholar 

  19. W.-H. Chen and P.-C. Hsu, Int. J. Hydrogen Energy, 36, 9355 (2011).

    Article  CAS  Google Scholar 

  20. I. P. Mardilovich, E. Engwall and Y. H. Ma, Desalination, 144, 85 (2002).

    Article  CAS  Google Scholar 

  21. A. Li, W. Liang and R. Hughes, Thin Solid Films, 350, 106 (1999).

    Article  CAS  Google Scholar 

  22. N. Itoh and W. C. Xu, Appl. Catal. A: Gen., 107, 83 (1993).

    Article  CAS  Google Scholar 

  23. Y.-M. Lin, S.-L. Liu, C.-H. Chuang and Y.-T. Chu, Catal. Today, 82, 127 (2003).

    Article  CAS  Google Scholar 

  24. W.-H. Chen, P.-C. Hsu and B.-J. Lin, Int. J. Hydrogen Energy, 35, 5410 (2010).

    Article  CAS  Google Scholar 

  25. H. Gao, J. Y. S. Lin, Y. Li and B. Zhang, J. Membr. Sci., 265, 142 (2005).

    Article  CAS  Google Scholar 

  26. F. Roa, J. D. Way, R. L. McCormick and S. N. Paglieri, Chem. Eng. J., 93, 11 (2003).

    Article  CAS  Google Scholar 

  27. W. Liang and R. Hughes, Catal. Today, 104, 238 (2005).

    Article  CAS  Google Scholar 

  28. B. K. R. Nair, J. Choi and M. P. Harold, J. Membr. Sci., 288, 67 (2007).

    Article  CAS  Google Scholar 

  29. L. Wang, R. Yoshiie and S. Uemiya, J. Membr. Sci., 306, 1 (2007).

    Article  CAS  Google Scholar 

  30. D. Wang, J. Tong, H. Xu and Y. Matsumura, Catal. Today, 93-95, 689 (2004).

    Article  CAS  Google Scholar 

  31. J. Tong, Y. Matsumura, H. Suda and K. Haraya, Sep. Purif. Technol., 46, 1 (2005).

    Article  CAS  Google Scholar 

  32. R. Dittmeyer, V. Höllein and K. Daub, J. Mol. Catal. A: Chem., 173, 135 (2001).

    Article  CAS  Google Scholar 

  33. M. L. Bosko, D. Yepes, S. Irusta, P. Eloy, P. Ruiz, E. A. Lombardo and L. M. Cornaglia, J. Membr. Sci., 306, 56 (2007).

    Article  CAS  Google Scholar 

  34. Y.-H. Chi, P.-S. Yen, M.-S. Jeng, S.-T. Ko and T.-C. Lee, Int. J. Hydrogen Energy, 35, 6303 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-June Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, DY., Hwang, KR., Park, JS. et al. Computational fluid dynamics modeling and analysis of Pd-based membrane module for CO2 capture from H2/CO2 binary gas mixture. Korean J. Chem. Eng. 32, 1414–1421 (2015). https://doi.org/10.1007/s11814-014-0346-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0346-2

Keywords

Navigation