Skip to main content
Log in

Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perceptron (MLP) neural network gives high correlation with R2=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k L a=4,652-1,9807 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Pohar and I. Plazl, Chem. Biochem. Eng. Q., 23, 537 (2009).

    CAS  Google Scholar 

  2. P.L. Mills, D. J. Quiram and J.F. Ryley, Chem. Eng. Sci., 62, 6992 (2007).

    Article  CAS  Google Scholar 

  3. J. Kobayashi, M. Yuichiro and S. Kobayashi, Chem. Asian J., 1–2, 22 (2006).

    Article  Google Scholar 

  4. G. Dummann, U. Quittmann, L. Gröschel, D.W. Agar, O. Wörz and K. Morgenschweis, Catal. Today, 79–80, 433 (2003).

    Article  Google Scholar 

  5. R. Halder, A. Lawal and R. Damavarapu, Catal. Today, 125, 74 (2007).

    Article  CAS  Google Scholar 

  6. Y. Voloshin, R. Halder and A. Lawal, Catal. Today, 125, 40 (2007).

    Article  CAS  Google Scholar 

  7. R. A. Maurya, C. P. Park and D.-P. Kim, Beilstein J. Org. Chem., 7, 1158 (2011).

    Article  CAS  Google Scholar 

  8. A. Šalić, A. Tušek, Ž. Kurtanjek and B. Zelić, Biotechnol. Bioproc. Eng., 16, 495 (2011).

    Article  Google Scholar 

  9. A. L. Dessimoz, L. Cavin, A. Renken and L. Kiwi-Minsker, Chem. Eng. Sci., 63, 4035 (2008).

    Article  CAS  Google Scholar 

  10. S. Waelchli and P. R. von Rohr, Int. J. Multiphase Flow, 32, 791 (2006).

    Article  CAS  Google Scholar 

  11. M.N. Kashid and D.W. Agar, Chem. Eng. J., 131, 1 (2007).

    Article  CAS  Google Scholar 

  12. G.N. Doku, W. Verboom, D. N. Reinhoudt and A. van den Berg, Tetrahedron, 61, 2733 (2005).

    Article  CAS  Google Scholar 

  13. J. R. Burns and C. Ramshaw, Lab Chip, 1, 10 (2001).

    Article  CAS  Google Scholar 

  14. M.N. Kashid, F. Platte, D.W. Agar and S. Turek, J. Comput. Appl. Math., 203, 487 (2007).

    Article  Google Scholar 

  15. M.N. Kashid, A. Renken and L. Kiwi-Minsker, Chem. Eng. Res. Des., 88, 362 (2010).

    Article  CAS  Google Scholar 

  16. A. Ghaini, A.M.N. Kashid and D.W. Agar, Chem. Eng. Process., 49, 358 (2010).

    Article  CAS  Google Scholar 

  17. C.-X. Zhao and A.P. J. Middelberg, Chem. Eng. Sci., 66, 1394 (2011).

    Article  CAS  Google Scholar 

  18. A. L. Dessimoz, P. Raspail, C. Berguerand and L. Kiwi-Minsker, Chem. Eng. J., 160, 882 (2010).

    Article  CAS  Google Scholar 

  19. M. K. Akbar, D. A. Plummer and S. M. Ghiaasiaan, Int. J. Multiphase Flow, 29, 855 (2003).

    Article  CAS  Google Scholar 

  20. M. C. Ruzicka, Chem. Eng. Res. Des., 86, 835 (2008).

    Article  CAS  Google Scholar 

  21. A. Tušek, A. Šalić, Ž. Kurtanjek and B. Zelić, Eng. Life Sci., 12, 49 (2012).

    Article  Google Scholar 

  22. R. Gupta, D.F. Fletcher and B.S. Haynes, Chem. Eng. Sci., 64, 2941 (2009).

    Article  CAS  Google Scholar 

  23. M.W. Losey, M. A. Schmidt and K. F. Jensen, Ind. Eng. Chem. Res., 40, 2555 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Zelić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tušek, A.J., Anić, I., Kurtanjek, Ž. et al. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor. Korean J. Chem. Eng. 32, 1037–1045 (2015). https://doi.org/10.1007/s11814-014-0283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0283-0

Keywords

Navigation