Skip to main content
Log in

Analysis of the dynamics of a packed column using semi-empirical models: Case studies with the removal of hexavalent chromium from effluent wastewater

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The dynamics of a packed bed, used for handling enormous quantities of effluent wastewater from industrial discharge, is a very important issue from a design point of view. Semi empirical Thomas and BDST Models are applied to analyze the dynamic behavior of packed beds filled in with GAC and PAC. Variations in breakthroughs with respect to exhaustion time, various bed depths, flow rates and influent solute concentrations are studied. The linearized BDST model gives very high values of R2=0.9959 (for 20% breakthrough) and R2=0.9578 (for 85% breakthrough), indicating the validity of the model for the present column system for both 20 and 85% of breakthroughs. For breakthroughs, below the 50% saturation, the BDST model is used to estimate the design of columns with various scale-ups of the process for other flow rates and initial adsorbate concentrations without any additional experiments. BDST coefficients of lower breakthroughs, below 50%, can also be used for evaluating other parameters such as critical bed depth, adsorption capacity and rate constant. The values of BDST constants, N0 and K, are not affected by changing flow rates for a particular adsorbent combination and changing influent concentrations. The validity of the Thomas model is ensured by the high R2 values, ranging from 0.855 to 0.925, while estimating the Thomas k Th and q0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Rojas, J. Silva, J.A. Flores, A. Rodriguez and M. Ly Maldonado, Sep. Purif. Technol., 44, 31 (2005).

    Article  CAS  Google Scholar 

  2. J. Acharya, J. N. Sahu, B. K. Sahoo, C. R. Mohanty and B. C. Meikap, Chem. Eng. J., 150, 25 (2009).

    Article  CAS  Google Scholar 

  3. S. Kalidhasan, M. Ganesh, S. Sricharan and N. Rajesh, J. Hazard. Mater., 165, 886 (2009).

    Article  CAS  Google Scholar 

  4. M. Costa, Toxcol. Appl. Pharm., 188, 1 (2003).

    Article  CAS  Google Scholar 

  5. S. S. Baral, S. N. Das, P. Rath and R. Chaudhury, Biochem. Eng. J., 34, 69 (2007).

    Article  CAS  Google Scholar 

  6. S. Srivastava, A. H. Ahmad and I. S. Thakur, Bioresour. Technol., 98, 1128 (2007).

    Article  CAS  Google Scholar 

  7. L. Dupont and E. Guillon, Environ. Sci. Technol., 37, 4235 (2003).

    Article  CAS  Google Scholar 

  8. S. Fendorf, B.W. Wielinga and C.M. Hansel, Int. Geol. Rev., 42, 691 (2000).

    Article  Google Scholar 

  9. X. Han, Y. S. Wong, M. H. Wong and N. F. Y. Tam, J. Hazard. Mater., 146, 65 (2007).

    Article  CAS  Google Scholar 

  10. S. K. Ouki and R. D. Neufeld, J. Chem. Technol. Biotechnol., 70, 3 (1997).

    Article  CAS  Google Scholar 

  11. H. S. Altundogan, Process. Biochem., 40, 1443 (2005).

    Article  CAS  Google Scholar 

  12. X. Zhou, T. Korenaga, T. Takahashi, T. Moriwake and S. Shinoda, Water Res., 27, 1049 (1993).

    Article  CAS  Google Scholar 

  13. H. Shaalan, M. Sorour and S. Tewfik, Desalination, 14, 315 (2001).

    Article  Google Scholar 

  14. S. Rengaraj, C. K. Joo, Y. Kim and J. Yi, J. Hazard. Mater., 102, 257 (2003).

    Article  CAS  Google Scholar 

  15. O. A. Fadali, Y. H. Magdy, A. A. M. Daifullah, E. E. Ebrahiem and M. M. Nassar, J. Environ. Sci. Health Part A, Toxic/ Hazard Subst. Environ. Eng., 39, 465 (2004).

    Article  CAS  Google Scholar 

  16. N. Rajesh, R.K. Jalan and P. Hotwany, J. Hazard. Mater., 150, 723 (2008).

    Article  CAS  Google Scholar 

  17. N. Zhao, N. Wei, J. Li, Z. Qiao, J. Cui and F. He, Chem. Eng. J., 115, 133 (2005).

    Article  CAS  Google Scholar 

  18. A. El-Nemr, A. Khaled, O. Abdelwahab and A. El-Sikaily, J. Hazard. Mater., 152, 263 (2008).

    Article  CAS  Google Scholar 

  19. D. Duranoglu, A.W. Trochimczuk and U. Beker, Chem. Eng. J., 187, 193 (2012).

    Article  CAS  Google Scholar 

  20. E. Malkoc and Y. Nuhoglu, Chem. Eng. Sci., 61, 4363 (2006).

    Article  CAS  Google Scholar 

  21. T.W. Weber and R. K. Chakravorti, AIChE J., 20, 228 (1974).

    Article  CAS  Google Scholar 

  22. D. C. Sharma and C. E. Forster, Process. Biochem., 31, 213 (1996).

    Article  CAS  Google Scholar 

  23. V. Sarin, T. S. Singh and K. K. Pant, Bioresour. Technol., 97, 1986 (2006).

    Article  CAS  Google Scholar 

  24. G. Boharts and E. N. Adam, J. Am. Chem. Soc., 42, 523 (1920).

    Article  Google Scholar 

  25. G. McKay and M. J. Bino, Water Environ. Pollut., 66, 33 (1990).

    Article  CAS  Google Scholar 

  26. T. R. Muraleedharan, L. Philip and L. Iyenger, Bioresour. Technol., 49, 179 (1994).

    Article  CAS  Google Scholar 

  27. M. Lehman, A. I. Zouboulis and K.A. Matis, Environ. Pollut., 113, 121 (2001).

    Article  Google Scholar 

  28. D. Kratochvil and B. Volesky, Water Res., 34, 3186 (2000).

    Article  CAS  Google Scholar 

  29. K. Vijayaraghavan and D. Prabu, J. Hazard. Mater., 137, 558 (2006).

    Article  CAS  Google Scholar 

  30. S. Ayoob, A. K. Gupta and P. B. Bhakat, Sep. Purif. Technol., 52, 430 (2007).

    Article  CAS  Google Scholar 

  31. Z. Zulfadhly, M. D. Mashitan and S. Bhatia, Environ. Pollut., 112, 463 (2001).

    Article  CAS  Google Scholar 

  32. D. C. K. Ko, J. F. Porter and G. McKay, Chem. Eng. Sci., 55, 5819 (2000).

    Article  CAS  Google Scholar 

  33. R. Hutchins, J. Chem. En. Lond., 81, 133 (1973).

    Google Scholar 

  34. M. Kobya, Bioresour. Technol., 91, 317 (2004).

    Article  CAS  Google Scholar 

  35. N. Sankararamakrishnan, P. Kumar and V. S. Chauhan, Sep. Purif. Technol., 63, 213 (2008).

    Article  CAS  Google Scholar 

  36. K. Vijayaraghavan, J. Jegan, K. Palanivelu and M. Velan, Chem. Eng. J., 106, 177 (2005).

    Article  CAS  Google Scholar 

  37. S. Netpradith, P. Thiravetyan and S. Towprayoon, Water Res., 38, 71 (2004).

    Article  Google Scholar 

  38. M. Z. Othman, F. A. Roddick and R. Snow, Water Res., 35, 2943 (2001).

    Article  CAS  Google Scholar 

  39. J. Goel, K. Kachrvehi, C. Rajagopal and V. K. Garg, J. Hazard. Mater., 125, 211 (2005).

    Article  CAS  Google Scholar 

  40. P. A. Kumar and S. Chakraborty, J. Hazard. Mater., 162, 1086 (2009).

    Article  CAS  Google Scholar 

  41. H. C. Thomas, J. Am. Chem. Soc., 66, 1466 (1944).

    Google Scholar 

  42. Z. Aksu and F. F. Cagatay, Sep. Purif. Technol., 48, 24 (2006).

    Article  CAS  Google Scholar 

  43. R. Han, Y. Wang, W. Yu, W. Zou, J. Shi and H. Lui, J. Hazard. Mater., 139, 513 (2006).

    Google Scholar 

  44. E. I. Unuabonah, B. I. Olu-Owolabi, E. I. Fasuyi and K. O. Adebowale, J. Hazard. Mater., 179, 415 (2010).

    Article  CAS  Google Scholar 

  45. P. Suksabye, P. Thiravetyan and W. Nakbanpote, J. Hazard. Mater., 160, 56 (2008).

    Article  CAS  Google Scholar 

  46. Z. Aksu and F. Gonen, Process. Biochem., 39, 599 (2004).

    Article  CAS  Google Scholar 

  47. Y. Fu and T. Viraraghavan, Water SA, 29, 465 (2003).

    Google Scholar 

  48. E. Malkoc, Y. Nuhoglu and Y. Abali, Chem. Eng. J., 119, 61 (2006).

    Article  CAS  Google Scholar 

  49. J. R. Rao and T. Viraraghavan, Bioresour. Technol., 85, 165 (2002).

    Article  CAS  Google Scholar 

  50. A. D. Easton, L. S. Clesceri and A. E. Greenberg, Standard methods for the examination of water and wastewater, Standard Methods, (APHA, AWWA, WEF) 17th Ed. (1989).

    Google Scholar 

  51. M.C. Huang, C. H. Chou and H. Teng, AIChE J., 48, 1804 (2002).

    Article  CAS  Google Scholar 

  52. Z. Aksu, S. S. Cagatay and F. Gonen, J. Hazard. Mater., 143, 362 (2007).

    Article  CAS  Google Scholar 

  53. S. Singha, U. Sarkar, S. Mondal and S. Saha, Desalination, 297, 48 (2012).

    Article  CAS  Google Scholar 

  54. S. Saha, U. Sarkar and S. Mondal, Desali. Water Treat., 37, 277 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjaini Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singha, S., Sarkar, U. Analysis of the dynamics of a packed column using semi-empirical models: Case studies with the removal of hexavalent chromium from effluent wastewater. Korean J. Chem. Eng. 32, 20–29 (2015). https://doi.org/10.1007/s11814-014-0183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0183-3

Keywords

Navigation