Skip to main content
Log in

Biocrude oil production and nutrient recovery from algae by two-step hydrothermal liquefaction using a semi-continuous reactor

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We evaluated two-step hydrothermal liquefaction in a semi-continuous reactor for recovery of both nutrients and biocrude from the alga Coelastrum sp. in direct comparison with a one-step process. The influence of the operating temperature, pressure and water flow rate was investigated by means of a 2k factorial experimental design and response surface methodology. The two-step process gave a higher total biocrude yield (~36 wt% (daf. basis)) and nutrient recovery level in terms of nitrogen containing compounds (~60 wt% of the protein content in the original algae as ammonium and nitrate ions and protein/polypeptides) than the single-step process. The highest biocrude yield was achieved at first-step temperature of 473 K, second-step temperature of 593 K, pressure of 200 bar and water flow rate of 0.5 mL/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Demirbas, Appl. Energy, 88, 17 (2011).

    Article  CAS  Google Scholar 

  2. M. F. Demirbas, Appl. Energy, 88, 3473 (2011).

    Article  CAS  Google Scholar 

  3. A. Singh and S. I. Olsen, Appl. Energy, 88, 3548 (2011).

    Article  CAS  Google Scholar 

  4. S. N. Naik, V. V. Goud, P. K. Rout and A. K. Dalai, Renew. Sust. Energy Rev., 14, 578 (2010).

    Article  CAS  Google Scholar 

  5. M. K. Lam and K. T. Lee, Biotech. Adv., 30, 673 (2012).

    Article  CAS  Google Scholar 

  6. H.M. Amaro, Â. C. Macedo and F. X. Malcata, Energy, 44, 158 (2012).

    Article  CAS  Google Scholar 

  7. J. Akhtar and N.A. S. Amin, Renew. Sust. Energy Rev., 15, 1615 (2011).

    Article  CAS  Google Scholar 

  8. D.R. Vardon, B. K. Sharma, J. Scott, G. Yu, Z. Wang, L. Schideman, Y. Zhang and T. J. Strathmann, Bioresour. Technol., 102, 8295 (2011).

    Article  CAS  Google Scholar 

  9. U. Jena, K.C. Das and J.R. Kastner, Bioresour. Technol., 102, 6221 (2011).

    Article  CAS  Google Scholar 

  10. A. A. Peterson, F. Vogel, R. P. Lachance, M. Fröling, J. Michael J. Antal and J.W. Tester, Energ. Environ. Sci., 1, 32 (2008).

    Article  CAS  Google Scholar 

  11. K. Anastasakis and A. B. Ross, Bioresour. Technol., 102, 4876 (2011).

    Article  CAS  Google Scholar 

  12. U. Jena, N. Vaidyanathan, S. Chinnasamy and K.C. Das, Bioresour. Technol., 102, 3380 (2011).

    Article  CAS  Google Scholar 

  13. P. Biller, A. B. Ross, S. C. Skill, A. Lea-Langton, B. Balasundaram, C. Hall, R. Riley and C. A. Llewellyn, Algal Research, 1, 70 (2012).

    Article  CAS  Google Scholar 

  14. D. R. Vardon, B. K. Sharma, G.V. Blazina, K. Rajagopalan and T. J. Strathmann, Bioresour. Technol., 109, 178 (2012).

    Article  CAS  Google Scholar 

  15. M. Chakraborty, C. Miao, A. McDonald and S. Chen, Fuel, 95, 63 (2012).

    Article  CAS  Google Scholar 

  16. U.S. DOE, National Algal Biofuels Technology Roadmap, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program (2010).

    Google Scholar 

  17. A. E. Harman-Ware, T. Morgan, M. Wilson, M. Crocker, J. Zhang, K. Liu, J. Stork and S. Debolt, Renew. Energy, 60, 625 (2013).

    Article  CAS  Google Scholar 

  18. G. Brunner, J. Supercrit. Fluid., 47, 373 (2009).

    Article  CAS  Google Scholar 

  19. Z. Du, M. Mohr, X. Ma, Y. Cheng, X. Lin, Y. Liu, W. Zhou, P. Chen and R. Ruan, Bioresour. Technol., 120, 13 (2012).

    Article  CAS  Google Scholar 

  20. K.-Y. Kang and B.-S. Chun, Korean J. Chem. Eng., 21, 654 (2004).

    Article  CAS  Google Scholar 

  21. K.-Y. Kang and B.-S. Chun, Korean J. Chem. Eng., 21, 1147 (2004).

    Article  CAS  Google Scholar 

  22. P. J. Valdez, M. C. Nelson, H.Y. Wang, X. N. Lin and P. E. Savage, Biomass Bioenergy, 46, 317 (2012).

    Article  CAS  Google Scholar 

  23. C.V. Gonzalez Lopez, M. d. C. C. Garcia, F.G. A. Fernandez, C. S. Bustos, Y. Chisti and J. M. F. Sevilla, Bioresour. Technol., 101, 7587 (2010).

    Article  Google Scholar 

  24. O.H. Lowry, N. J. Rosebrough, A.W. Farr and R. J. Randall, J. Biol. Chem., 193, 265 (1951).

    CAS  Google Scholar 

  25. C. E. Bower and T. Holm-Hassen, Can. J. Fish. Aquat. Sci., 37, 794 (1980).

    Article  CAS  Google Scholar 

  26. APHA, AWWA, and WEF (American Public Health Association, American Water Works Association, and Water Environment Federation), Standard Methods for the Examination of Water and Wastewater, Colorado (1998).

    Google Scholar 

  27. D. C. Montgomery, Design and analysis of experiments, Wiley, New York, USA (1972).

    Google Scholar 

  28. N. Akiya and P. E. Savage, Chem. Rev., 102, 2725 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prapan Kuchonthara.

Additional information

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunphorka, S., Prapaiwatcharapan, K., Hinchiranan, N. et al. Biocrude oil production and nutrient recovery from algae by two-step hydrothermal liquefaction using a semi-continuous reactor. Korean J. Chem. Eng. 32, 79–87 (2015). https://doi.org/10.1007/s11814-014-0165-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0165-5

Keywords

Navigation