Skip to main content
Log in

Pork lard conversion to biodiesel using a microchannel reactor

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Biodiesel was synthesized from pork lard via transesterification using a microchannel reactor. To investigate the effects of operating parameters, including reaction temperature (55–65 °C), residence time (5–20 s), methanol-to-oil molar ratio (4.5 : 1 to 9 : 1), and catalyst concentration (0.7–1.3 wt%), a series of full factorial experiments with a complete replicate were conducted. Results were statistically analyzed using MINITAB with the significance level of 0.05. A quadratic model was proposed for the prediction of %FAME from the specified operating conditions. High %FAME was obtained at low residence time due to the small size of droplets in the microchannel reactor. Evidence of droplets supported the presence of mass transfer limitation in this system. The optimal operating conditions provided %FAME of 95.41% were as follows: methanol-to-oil ratio of 6 : 1, temperature of 65 °C, residence time of 5 s, and KOH concentration of 1.3%w/w.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. A. K. Agarwal, Prog. Energy Combust. Sci., 33, 233 (2007).

    Article  CAS  Google Scholar 

  2. A. Srivastava and R. Prasad, Renew. Sust. Energy Rev., 4, 111 (2000).

    Article  CAS  Google Scholar 

  3. H. Fukuda, A. Kondo and H. Noda, J. Biol. Eng., 92, 405 (2001).

    CAS  Google Scholar 

  4. R. Jachuck, G. Pherwani and S.M. Gorton, J. Environ. Monit., 11, 642 (2008).

    Article  Google Scholar 

  5. G. Vincente, M. Martinez and J. Aracil, Bioresour. Technol., 92, 297 (2004).

    Article  Google Scholar 

  6. T. Iwasaki and J.-I. Yoshida, Macromolecules, 38, 1159 (2004).

    Article  Google Scholar 

  7. V. Hessel, C. Serra, H. Lowe and G. Hadziioannou, Chem. Ing. Technol., 77, 39 (2005).

    Google Scholar 

  8. Z. Wen, X. Yu, S. T. Tu, J. Yan and E. Dahlquist, Bioresour. Technol., 100, 3054 (2009).

    Article  CAS  Google Scholar 

  9. G. Guan, K. Kusakabe, K. Moriyama and N. Sakurai, Ind. Eng. Chem., 48, 1357 (2009).

    Article  CAS  Google Scholar 

  10. F. Avellaneda and J. Salvado, Fuel Process. Technol., 92, 83 (2011).

    Article  CAS  Google Scholar 

  11. P. Sun, B. Wang, J. Yao, L. Zhang and N. Xu, Ind. Eng. Chem. Res., 49, 1259 (2010).

    Article  CAS  Google Scholar 

  12. P. Sun, J. Sun, J. Yao, L. Zhang and N. Xu, Chem. Eng. J., 162, 364 (2010).

    Article  CAS  Google Scholar 

  13. D. C. Montgomery, Design and analysis of experiment, 7th Ed., Wiley (2009).

    Google Scholar 

  14. J. Sun, J. Ju, L. Ji, L. Zhang and N. Xu, Ind. Eng. Chem. Res., 47, 1398 (2008).

    Article  CAS  Google Scholar 

  15. D.Y.C. Leung and Y. Guo, Fuel Process. Technol., 87, 883 (2006).

    Article  CAS  Google Scholar 

  16. M. Charoenchaitrakool and J. Thienmethangkoon, Fuel Process. Technol., 92, 112 (2011).

    Article  CAS  Google Scholar 

  17. T. Eevera, K. Rajendran and S. Saradha, Renewable Energy, 34, 762 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attasak Jaree.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamsub, A., Kaewchada, A. & Jaree, A. Pork lard conversion to biodiesel using a microchannel reactor. Korean J. Chem. Eng. 31, 2170–2176 (2014). https://doi.org/10.1007/s11814-014-0120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0120-5

Keywords

Navigation