Skip to main content

Advertisement

Log in

Pinch based approach to estimate CO2 capture and storage retrofit and compensatory renewable power for South Korean electricity sector

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A pinch-based approach has been used to calculate optimum values of CO2 capture and storage (CCS) retrofit and compensatory renewable power for the Korean electricity sector. Three cases are proposed. In the first case, KEPCO 2020 power generation forecast data were used to calculate CO2 emissions and a 30% emission reduction target applied. For the second case, nuclear-free KEPCO 2020 forecast was used to calculate emissions along with 30% emissions reduction. In the third case, the emissions reduction target increased from 30% to 54.50% for case-2 scenario, in order to achieve 2005 emissions level. Results show that CCS retrofit and compensatory renewable power for case 3 is 2.6 times higher than case 1 and 1.8 times higher than case 2. According to sensitivity analysis results, CCS retrofit and compensatory renewable power for case 3 is more sensitive to CO2 removal ratio and parasitic energy loss ratio, respectively, as compared to case 1 and case 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Quadrelli and S. Peterson, Energy Policy, 35(11), 5538 (2007).

    Article  Google Scholar 

  2. D. Weisser, Energy, 32(9), 1543 (2007).

    Article  CAS  Google Scholar 

  3. M. Jefferson, Energy Policy, 36(11), 4116 (2008).

    Article  Google Scholar 

  4. B. J. P. Buhre, L. K. Elliot, C. D. Sheng, R. P. Gupta and T. F. Wall, Progress in Energy and Combustion Science, 31(4), 283 (2005).

    Article  CAS  Google Scholar 

  5. Wall TF, Proceedings of the Combustion Institute, 31(1), 31 (2007).

    Article  Google Scholar 

  6. H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane and A. E. Bland, J. Environ. Sci., 20(1), 14 (2008).

    Article  CAS  Google Scholar 

  7. K. Riahi, E. S. Rubin and L. Schattenholzer, Energy, 29(9–10), 1309 (2004).

    Article  CAS  Google Scholar 

  8. K. Andersson and F. Johnsson, Energy Convers. Manage., 47(18–19), 3487 (2006).

    Article  CAS  Google Scholar 

  9. U. Lee, Y. Lim, S. Lee, J. Jung and C. Han, Ind. Eng. Chem. Res., 51(1), 389 (2012).

    Article  CAS  Google Scholar 

  10. B. F. Moller, M. Assadi and I. Potts, Energy, 31(10–11), 1520 (2006).

    Article  Google Scholar 

  11. J. Jung, Y. Lim, Y. S. Jeong, U. Lee, S. Yang and C. Han, Korean Chem. Eng. Res., 49(6), 764 (2011).

    CAS  Google Scholar 

  12. http://www.reuters.com/article/2011/06/15/energy-summit-koreaidUSL3E7HF0VV20110615.

  13. B. Linnhoff, D.W. Townsend, D. Boland, G. F. Hewitt, B. E.A. Thomas and A. R. Guy, A user guide on process integration for the efficient use of energy, Institution of Chemical Engineers, Rugby (1982).

    Google Scholar 

  14. M.M. El-Halwagi and V. Manousiothakis, AIChE J., 36(8), 1209 (1990).

    Article  CAS  Google Scholar 

  15. M. M. El-Halwagi, Pollution prevention through process integration: Systematic design tools, Academic Press, San Diego (1997).

    Google Scholar 

  16. M. M. El-Halwagi, Process integration, Elsevier Inc., Amsterdam (2006).

    Google Scholar 

  17. Y. P. Wang and R. Smith, Chem. Eng. Sci., 49(7), 981 (1994).

    Article  CAS  Google Scholar 

  18. N. Hallale, Adv. Environ. Res., 6(3), 377 (2002).

    Article  CAS  Google Scholar 

  19. M.M. El-Halwagi, F. Gabriel and D. Harrel, Ind. Eng. Chem. Res., 42(19), 4319 (2003).

    Article  CAS  Google Scholar 

  20. Z. A. Manan, Y. L. Tan and D.C.Y. Foo, AIChE J., 50(12), 3169 (2004).

    Article  CAS  Google Scholar 

  21. R. Prakash and U.V. Shenoy, Chem. Eng. Sci., 60(1), 255 (2005).

    Article  CAS  Google Scholar 

  22. D. K. S. Ng, D. C. Y. Foo and R. R. Tan, Ind. Eng. Chem. Res., 46(26), 9107 (2007).

    Article  CAS  Google Scholar 

  23. D. K. S. Ng, D. C. Y. Foo and R. R. Tan, Ind. Eng. Chem. Res., 46(26), 9114 (2007).

    Article  CAS  Google Scholar 

  24. G. P. Towler, R. Mann, A. J.-L. Serriere and C.M. D. Gabaude, Ind. Eng. Chem. Res., 35(7), 2378 (1996).

    Article  CAS  Google Scholar 

  25. J. J. Alves and G. P. Towler, Ind. Eng. Chem. Res., 41(23), 5759 (2002).

    Article  CAS  Google Scholar 

  26. V. Agrawal and U. V. Shenoy, AIChE J., 52(3), 1071 (2006).

    Article  CAS  Google Scholar 

  27. D. C.Y. Foo and Z. A. Manan, Ind. Eng. Chem. Res., 45(17), 5986 (2006).

    Article  CAS  Google Scholar 

  28. V. Kazantzi and M. M. El-Halwagi, Chem. Eng. Progress, 101(8), 28 (2005).

    CAS  Google Scholar 

  29. D. C. Y. Foo, V. Kazantzi, M.M. El-Halwagi and Z. A. Manan, Chem. Eng. Sci., 61(8), 2626 (2006).

    Article  CAS  Google Scholar 

  30. R. Smith and O. Delaby, Chem. Eng. Res. Design, 69(6), 492 (1992).

    Google Scholar 

  31. V. R. Dhole and B. Linnhoff, Computer Chem. Eng., 17(S1), S101 (1993).

    CAS  Google Scholar 

  32. B. Linnhoff and V. R. Dhole, Chem. Eng. Technol., 16(4), 252 (1993).

    Article  CAS  Google Scholar 

  33. J. Klemeš, V. R. Dhole, K. Raissi, S. J. Perry and L. Puigjaner, Appl. Thermal Eng., 17(8–10), 993 (1997).

    Article  Google Scholar 

  34. A. Goršek, P. Glaviè and M. Bogataj, Chemical Engineering and Processing: Process Intensification, 45(5), 372 (2006).

    Article  Google Scholar 

  35. S. Perry, J. Klemeš and I. Bulatov, Energy, 33(10), 1489 (2008).

    Article  CAS  Google Scholar 

  36. R. R. Tan and D. C. Y. Foo, Energy, 32(8), 1422 (2007).

    Article  Google Scholar 

  37. S. C. Lee, D. K. S. Ng, D. C.Y. Foo and R. R. Tan, Appl. Energy, 86(1), 60 (2009).

    Article  Google Scholar 

  38. D. C.Y. Foo, R. R. Tan and D. K. S. Ng, Energy, 33(10), 1480 (2008).

    Article  CAS  Google Scholar 

  39. D. Crilly and T. Zhelev, Energy, 33(10), 1498 (2008).

    Article  CAS  Google Scholar 

  40. M. J. Atkins, A. S. Morrison and M. R. W. Walmsley, Paper presented in Society of Chemical Engineers New Zealand Annual Conference (SCENZ08), New Zealand (2008).

  41. Raymond R. Tan, Denny Kok Sum Ng and Dominic Chwan Yee Foo, Journal of Cleaner Production, 17(10), 940 (2009).

    Article  Google Scholar 

  42. http://www.greengrowth.go.kr/english/en_subpolicy/en_greenhouse/en_greenhouse.cms.

  43. Table 2.16, The 5th Basic Plan for Long-term Electricity Supply and Demand (2010–2024) http://cyber.kepco.co.kr/kepco_new/eng/ir/resource/powerStatistics.jsp?gubun=J.

  44. http://en.wikipedia.org/wiki/Fukushima_Daiichi_Nuclear_Power_Plant#Nuclear_disaster_of_2011.

  45. http://en.wikipedia.org/wiki/Nuclear_power_phase-out.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chonghun Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilyas, M., Lim, Y. & Han, C. Pinch based approach to estimate CO2 capture and storage retrofit and compensatory renewable power for South Korean electricity sector. Korean J. Chem. Eng. 29, 1163–1170 (2012). https://doi.org/10.1007/s11814-011-0302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0302-3

Key words

Navigation