Skip to main content

Advertisement

Log in

Reactivity of a CaSO4-oxygen carrier in chemical-looping combustion of methane in a fixed bed reactor

  • Presented at the 7th Korea-China Clean Energy Technology Symposium
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Chemical-looping combustion (CLC) is a promising technology for the combustion of gas or solid fuel with efficient use of energy and inherent separation of CO2. A reactivity study of CaSO4 oxygen carrier in CLC of methane was conducted in a laboratory scale fixed bed reactor. The oxygen carrier particles were exposed in six cycles of alternating reduction methane and oxidation air. A majority of CH4 reacted with CaSO4 to form CO2 and H2O. The oxidation was incomplete, possibly due to the CaSO4 product layer. The reactivity of CaSO4 oxygen carrier increased for the initial cycles but slightly decreased after four cycles. The product gas yields of CO2, CH4, and CO with cycles were analyzed. Carbon deposition during the reduction period was confirmed with the combustible gas (CO+H2) in the product gas and slight CO2 formed during the early stage of oxidation. The mechanism of carbon deposition and effect was also discussed. SO2 release behavior during reduction and oxidation was investigated, and the possible formation mechanism and mitigation method was discussed. The oxygen carrier conversion after the reduction decreased gradually in the cyclic test while it could not restore its oxygen capacity after the oxidation. The mass-based reaction rates during the reduction and oxidation also demonstrated the variation of reactivity of CaSO4 oxygen carrier. XRD analysis illustrated the phase change of CaSO4 oxygen carrier. CaS was the main reduction product, while a slight amount of CaO also formed in the cyclic test. ESEM analysis demonstrated the surface change of particles during the cyclic test. The reacted particles tested in the fixed bed reactor were not uniform in porosity. EDS analysis demonstrated the transfer of oxygen from CaSO4 to fuel gas while leaving CaS as the dominant reduced product. The results show that CaSO4 oxygen carrier may be an interesting candidate for oxygen carrier in CLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Lyngfelt, B. Leckner and T. Mattisson, Chem. Eng. Sci., 56, 3101 (2001).

    Article  CAS  Google Scholar 

  2. M. Ishida and H. Jin, Ind. Eng. Chem. Res., 35, 2469 (1996).

    Article  CAS  Google Scholar 

  3. H.G. Jin, T. Okamoto and M. Ishida, Ind. Eng. Chem. Res., 38, 126 (1999).

    Article  CAS  Google Scholar 

  4. T. Mattisson, M. Johansson and A. Lyngfelt, Energy Fuels, 18, 628 (2004).

    Article  CAS  Google Scholar 

  5. P. Cho, T. Mattisson and A. Lyngfelt, Fuel, 83, 1215 (2004).

    Article  CAS  Google Scholar 

  6. M. Johansson, T. Mattisson and A. Lyngfelt, Energy Fuels, 20, 2399 (2006).

    Article  CAS  Google Scholar 

  7. T. Mattisson, M. Johansson and A. Lyngfelt, Fuel, 85, 736 (2006).

    Article  CAS  Google Scholar 

  8. J. Adánez, L. F. de Diego, F. García-Labiano, P. Gayán, A. Abad and J. M. Palacios, Energy Fuels, 18, 371 (2004).

    Article  Google Scholar 

  9. L. F. de Diego, F. García-Labiano, P. Gayán, J. Celaya, J. M. Palacios, and J. Adánez, Fuel, 86, 1036 (2007).

    Article  Google Scholar 

  10. B. M. Corbella, L. de Diego, F. García-Labiano, J. Adánez and J. M. Palacios, Energy Fuels, 20, 148 (2006).

    Article  CAS  Google Scholar 

  11. J. Adánez, P. Gayán, J. Celaya, L. F. de Diego, F. García-Labiano and A. Abad, Ind. Eng. Chem. Res., 45, 6075 (2006).

    Article  Google Scholar 

  12. H. J. Ryu, D. H. Bae and G. T. Jin, Korean J. Chem. Eng., 20, 960 (2003).

    Article  CAS  Google Scholar 

  13. H. J. Ryu, D. H. Bae, K. H. Han, S.Y. Lee, G. T. Jin and J.H. Choi, Korean J. Chem. Eng., 18, 831 (2001).

    Article  CAS  Google Scholar 

  14. H. J. Ryu and G. T. Jin, Korean J. Chem. Eng., 24, 527 (2007).

    Article  CAS  Google Scholar 

  15. H. J. Ryu, N.Y. Lim, D. H. Bae and G. T. Jin, Korean J. Chem. Eng., 20, 157 (2003).

    Article  CAS  Google Scholar 

  16. K. S. Song, Y. S. Seo, H. K. Yoon and S. J. Cho, Korean J. Chem. Eng., 20, 471 (2003).

    Article  CAS  Google Scholar 

  17. S. R. Son and S. D. Kim, Ind. Eng. Chem. Res., 45, 2689 (2006).

    Article  CAS  Google Scholar 

  18. L. H. Shen, M. Zheng, J. Xiao, H. Zhang and R. Xiao, Sci. China Ser. E: Technol. Sci., 50, 230 (2007).

    Article  CAS  Google Scholar 

  19. L. Shen, M. Zheng, J. Xiao and R. Xiao, Combust. Flame, 154, 489 (2008).

    Article  CAS  Google Scholar 

  20. L. Shen, J. Wu and J. Xiao, Combust. Flame, 156, 721 (2009).

    Article  CAS  Google Scholar 

  21. T. Mattisson, A. Jardnas and A. Lyngfelt, Energy Fuels, 17, 643 (2003).

    Article  CAS  Google Scholar 

  22. H. E. J. Andrus, J. H. Chiu, P. T. Stromberg and P. R. Thibeault, in 22nd Annual international pittsburgh coal conference, Pittsburgh, U.S.A. (2005).

  23. J. S. Wang and E. J. Anthony, Applied Energy, 85, 73 (2008).

    Article  CAS  Google Scholar 

  24. E. J. Anthony, Ind. Eng. Chem. Res., 47, 1747 (2008).

    Article  CAS  Google Scholar 

  25. Q. L. Song, R. Xiao, Z.Y. Deng, H.Y. Zhang, L. H. Shen and M.Y. Zhang, Energy Conver. and Manage., 49, 3178 (2008).

    Article  CAS  Google Scholar 

  26. R. Xiao, L. H. Shen, M.Y. Zhang, B. S. Jin, Y.Q. Xiong, Y. F. Duan, Z. P. Zhong, H. C. Zhou, X. P. Chen and Y. J. Huang, Korean J. Chem. Eng., 24, 175 (2007).

    Article  CAS  Google Scholar 

  27. R. Xiao, M.Y. Zhang, B. S. Jin, Y. J. Huang and H. C. Zhou, Energy Fuels, 20, 715 (2006).

    Article  CAS  Google Scholar 

  28. H. Zhou, B. Jin, Z. Zhong, Y. Huang, R. Xiao and Y. Zheng, Korean J. Chem. Eng., 24, 489 (2007).

    Article  CAS  Google Scholar 

  29. G. Marbán, M. García-Calzada and A. B. Fuertes, Chem. Eng. Sci., 54, 77 (1999).

    Article  Google Scholar 

  30. T. Mattisson, A. Lyngfelt and P. Cho, Fuel, 80, 1953 (2001).

    Article  CAS  Google Scholar 

  31. A. Abad, T. Mattisson, A. Lyngfelt and M. Johansson, Fuel, 86, 1021 (2007).

    Article  CAS  Google Scholar 

  32. L. F. de Diego, P. Gayán, F. García-Labiano, J. Celaya, M. Abad and J. Adánez, Energy Fuels, 19, 1850 (2005).

    Article  Google Scholar 

  33. K. Qiu, T. Mattisson, B. M. Steenari and O. Lindqvist, Thermochim. Acta, 298, 87 (1997).

    Article  CAS  Google Scholar 

  34. K. Qiu, O. Lindqvist and T. Mattisson, Fuel, 78, 225 (1999).

    Article  CAS  Google Scholar 

  35. P. Cho, T. Mattisson and A. Lyngfelt, Ind. Eng. Chem. Res., 44, 668 (2005).

    Article  CAS  Google Scholar 

  36. P. Cho, T. Mattisson and A. Lyngfelt, Ind. Eng. Chem. Res., 45, 968 (2006).

    Article  CAS  Google Scholar 

  37. M. Johansson, T. Mattisson, A. Lyngfelt and A. Abad, Fuel, 87, 988 (2008).

    Article  CAS  Google Scholar 

  38. H. Jin and M. Ishida, Fuel, 83, 2411 (2004).

    Article  CAS  Google Scholar 

  39. Q. L. Song, R. Xiao, Y. B. Li and L. H. Shen, Ind. Eng. Chem. Res., 47, 4349 (2008).

    Article  CAS  Google Scholar 

  40. N. Berguerand and A. Lyngfelt, Fuel, 87, 2713 (2008).

    Article  CAS  Google Scholar 

  41. T. Mattisson and A. Lyngfelt, Thermochim. Acta, 325, 59 (1999).

    Article  CAS  Google Scholar 

  42. M. J. Fernandez, A. Lyngfelt and B. M. Steenari, Energy Fuels, 14, 654 (2000).

    Article  CAS  Google Scholar 

  43. H.Y. Sohn and B. S. Kim, Ind. Eng. Chem. Res., 41, 3081 (2002).

    Article  CAS  Google Scholar 

  44. J. S. Dennis and A. N. Hayhurst, Chem. Eng. Sci., 45, 1175 (1990).

    Article  CAS  Google Scholar 

  45. T. Mattisson and A. Lyngfelt, Energy Fuels, 12, 905 (1998).

    Article  CAS  Google Scholar 

  46. E. J. Anthony and D. L. Granatstein, Prog. Energy Combust. Sci., 27, 215 (2001).

    Article  CAS  Google Scholar 

  47. M. Johansson, T. Mattisson and A. Lyngfelt, Ind. Eng. Chem. Res., 43, 6978 (2004).

    Article  CAS  Google Scholar 

  48. N. H. Davies, K. M. Laughlin and A. N. Hayhurst, Symposium (International) on Combustion, 25, 211 (1994).

    Article  Google Scholar 

  49. N. H. Davies and A.N. Hayhurst, Combust. Flame, 106, 359 (1996).

    Article  CAS  Google Scholar 

  50. G. Marbán, M. García-Calzada and A. B. Fuertes, Chem. Eng. Sci., 54, 495 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qilei Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Q., Xiao, R., Deng, Z. et al. Reactivity of a CaSO4-oxygen carrier in chemical-looping combustion of methane in a fixed bed reactor. Korean J. Chem. Eng. 26, 592–602 (2009). https://doi.org/10.1007/s11814-009-0101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0101-2

Key words

Navigation