Skip to main content
Log in

Characteristics of nitrogen and phosphorus removal in SBR and SBBR with different ammonium loading rates

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Laboratory scale experiments were conducted to study the deterioration of enhanced biological phosphorus removal (EBPR) due to influent ammonium concentration, and to compare the performance of two types of sequencing batch reactor (SBR) systems, a conventional SBR and sequencing batch biofilm reactor (SBBR). Both in SBR and SBBR, the total nitrogen removal efficiency decreased from 100% to 53% and from 87.5% to 54.4%, respectively, with the increase of influent ammonium concentration from 20 mg/l to 80 mg/l. When the influent ammonium concentration was as low as 20 mg/l (C: N: P=200: 20: 15), denitrifying glycogen-accumulating organisms (DGAOs) were successfully grown and activated by using glucose as a sole carbon source in a lab-scale anaerobic-oxic-anoxic (A2O) SBR. In the SBR, due to the effect of incomplete denitrification and pH drop, the nitrogen and phosphorus removal efficiency decreased from 77% to 33.3% when the influent ammonium concentration increased from 20 mg/l to 80 mg/l. However, in the SBBR, simultaneous nitrification/denitrification (SND) occurred, and the nitrification rate in the aerobic phase did not change remarkably in spite of the increase in influent ammonium concentration. Phosphorus removal was not affected by the increase of influent ammonium concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. G. Lee and T. Hano, Korean J. Chem. Eng., 18, 178 (2001).

    Article  CAS  Google Scholar 

  2. H. U. Man, T. H. Lee, Y. O. Kim, S. H. Park and T. J. Park, Korean J. Chem. Eng., 21, 635 (2004).

    Article  Google Scholar 

  3. C. M. D. Filipe, G.T. Daigger and C. L. P. Grady, Biotechnol. Bioeng., 76, 361 (2001).

    Article  Google Scholar 

  4. W. T. Liu, T. Mino, K. Nakamura and T. Matsuo, Wat. Res., 30, 75 (1996).

    Article  CAS  Google Scholar 

  5. R. L. Irvine and L. H. Ketchum, Crit. Rev. Envir. Engrg., 18, 255 (1988).

    CAS  Google Scholar 

  6. K. M. Poo, J. H. Im, J.H. Ko, Y. J. Kim, H. J. Woo and C.W. Kim, Korean J. Chem. Eng., 22, 666 (2005).

    Article  CAS  Google Scholar 

  7. P.A. Wilderer, Sequencing batch biofilm reactor technology. In: Harnessing biotechnology for the 21 st century, Ladish M. R. and Bose A. Eds., American Chemical Society (1992).

  8. D. M. White, T. A. Pilon and C. Woolard, Wat. Res., 34(7), 2105 (2000).

    Article  CAS  Google Scholar 

  9. Z. Zhang, J. Zhou, J. Wang, H. Guo and J. Tong, Process Biochem., 41, 599 (2006).

    Article  CAS  Google Scholar 

  10. A. Gieseke, P. Arnz, R. Amann and A. Schramm, Wat. Res., 36, 501 (2002).

    Article  CAS  Google Scholar 

  11. C.M. Falkentoft, P. Arnz, M. Henze, H. Mosbaek, E. Muller, P. A. Wilderer and P. Harremoes, Biotechnol. Bioeng., 76(1), 77 (2001).

    Article  CAS  Google Scholar 

  12. E. Morgenroth and P. A. Wilderer, Wat. Sci. Tech., 39(7), 33 (1999).

    Article  CAS  Google Scholar 

  13. Standard methods for the examination of water and wastewater, 20th Ed., APHA/AWWA/WEF, Washington DC, USA (1998).

  14. T. Kuba, M. C. M. van Loosdrecht, F. A. Brandse and J. J. Heijnen, Wat. Res., 31, 777 (1997).

    Article  CAS  Google Scholar 

  15. J. Ahn, T. Daidou, S. Tsuneda and A. Hirata, Wat. Res., 36, 403 (2002).

    Article  CAS  Google Scholar 

  16. R. J. Zeng, Z. Yuan and J. Keller, Biotechnol. Bioeng., 81(4), 397 (2003).

    Article  CAS  Google Scholar 

  17. A. Oehmen, A. Saunder, L. L. Blackall, Z. Yuan and J. Keller, Presented at the IWA world water congress, Melbourne, Australia (2002).

  18. E.V. Munch, P. A. Lant and J. Keller, Wat. Res., 30(2), 277 (1996).

    Article  Google Scholar 

  19. H. Guo, J. Zhou, J. Su and Z. Zhang, Biochem. Eng. J., 23, 57 (2005).

    Article  CAS  Google Scholar 

  20. R. J. Zeng, R. Lemaire, Z. Yuan and J. Keller, Wat. Sci. Technol., 50(10), 163 (2004).

    CAS  Google Scholar 

  21. G. J. F. Smolders, J. J. van der Meij, M. C. M. van Loosdrecht and J. J. Heijnen, Biotech. Bioeng., 43, 461 (1994).

    Article  CAS  Google Scholar 

  22. B. M. Kumar and S. Chaudhari, Wat. Sci. Tech., 48(3), 73 (2003).

    CAS  Google Scholar 

  23. C. D. M. Filipe, G. T. Daigger and C. L. P. Grady Jr., Biotechnol. Bioeng., 76(1), 17 (2001).

    Article  CAS  Google Scholar 

  24. C. D. M. Filipe, G. T. Daigger and C. L. P. Grady Jr., Wat. Environ. Res., 73(2), 213 (2001).

    Article  CAS  Google Scholar 

  25. H. P. H. Feng, T. Zhang and Y. Liu, Wat. Res., 36(13), 3211 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Seek Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DS., Jung, NS. & Park, YS. Characteristics of nitrogen and phosphorus removal in SBR and SBBR with different ammonium loading rates. Korean J. Chem. Eng. 25, 793–800 (2008). https://doi.org/10.1007/s11814-008-0130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0130-2

Key words

Navigation