Skip to main content
Log in

Thermodynamic analysis of hydrocarbon refrigerants-based ethylene BOG re-liquefaction system

  • Published:
Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

The present study aims to make a thermodynamic analysis of an ethylene cascade re-liquefaction system that consists of the following two subsystems: a liquefaction cycle using ethylene as the working fluid and a refrigeration cycle operating with a hydrocarbon refrigerant. The hydrocarbon refrigerants considered are propane (R290), butane (R600), isobutane (R600a), and propylene (R1270). A computer program written in FORTRAN is developed to compute parameters for characteristic points of the cycles and the system’s performance, which is determined and analyzed using numerical solutions for the refrigerant condensation temperature, temperature in tank, and temperature difference in the cascade condenser. Results show that R600a gives the best performance, followed by (in order) R600, R290, and R1270. Furthermore, it is found that an increase in tank temperature improves system performance but that an increase in refrigerant condensation temperature causes deterioration. In addition, it is found that running the system at a low temperature difference in the cascade condenser is advantageous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson TN, Ehrhardt ME, Foglesong RE, Bolton T, Jones D, Richardson A, 2009. Shipboard reliquefaction for large LNG carriers. Proc. 1st Annual Gas Processing Symposium, Doha, Qatar.

    Google Scholar 

  • Baek S, Hwang G, Lee C, Jeong S, Choi D, 2011. Novel design of LNG (liquefied natural gas) reliquefaction process. Energy Conversion Management, 52(8-9), 2807–2814. DOI: 10.1016/j.enconman.2011.02.015

    Article  Google Scholar 

  • Beladjine MB, Ouadha A, Adjlout L, 2013. Performance analysis of oxygen refrigerant in an LNG BOG re-liquefaction plant. Procedia Computer Science, 19, 762–769. DOI: 10.1016/j.procs.2013.06.100

    Article  Google Scholar 

  • Beladjine BM, Ouadha A, Benabdesslam Y, Adjlout L, 2011. Exergy analysis of an LNG BOG re-liquefaction plant. Proc. 23rd IIR Int. Congress Refrigeration, Prague, Czech Republic.

    Google Scholar 

  • Berlinck EC, Parise JAR, Pitanga Marques R, 1997. Numerical simulation of an ethylene re-liquefaction plant. Int. J. Energy Research, 21(7), 597–614. DOI:10.1002/(SICI)1099-114X(19970610)21:7<597::AID-ER1 93>3.0.CO;2-5

    Article  Google Scholar 

  • Bosnjakovic F, 1965. Technical thermodynamics. Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Bounefour O, Ouadha A, 2014. Thermodynamic analysis and working fluid optimization of a combined ORC-VCC system using waste heat from a marine diesel engine. Proc. ASME 2014 Int. Mechanical Eng. Congress Exposition, Montreal, Canada.

    Google Scholar 

  • Brodyansky VM, Sorin MV, Le Goff P, 1994. The efficiency of industrial processes: exergy analysis and optimization. Elsevier, New York.

    Google Scholar 

  • Chien MH, Shih MY, 2011. An Innovative optimization design for a boil-off gas reliquefaction process of LEG vessels. J. Petroleum, 47(4), 65–74.

    Google Scholar 

  • Chin YW, 2006. Cycle analysis on LNG boil-off gas re-liquefaction plant. J. Korean Institute Appl. Superconductivity Cryogenics, 8(4), 34–38.

    Google Scholar 

  • Dimopoulos GG, Frangopoulos CA, 2008. A Dynamic model for liquefied natural gas evaporation during marine transportation. Int. J. Thermodynamics, 11(3), 123–131. http://dx.doi.org/10.5541/ijot.220

    Google Scholar 

  • Djermouni M, Ouadha A, 2014. Thermodynamic analysis of an HCCI engine based system running on natural gas. Energy Conversion Management, 88(12), 723–731. DOI: 10.1016/j.enconman.2014.09.033

    Article  Google Scholar 

  • Gomez JR, Gomez MR, Bernal JL, Insua AB, 2015. Analysis and efficiency enhancement of a boil-off gas reliquefaction system with cascade cycle on board LNG carriers. Energy Conversion Management, 94(4), 261–274. DOI: 10.1016/j.enconman.2015.01.074

    Article  Google Scholar 

  • Kotas TJ, 1985. The exergy method of thermal plant analysis, 1st ed. Butterworth, London.

    Google Scholar 

  • Li Y, Jin G, Zhong Z, 2012. Thermodynamic Analysis-based improvement for the boil-off gas reliquefaction. Process of Liquefied Ethylene Vessels, Chemical Eng. Technology, 35(10), 1759–1764.

    Google Scholar 

  • Moon JW, Lee YP, Jin YW, Hong ES, Chang HM, 2007. Cryogenic refrigeration cycle for re-liquefaction of LNG boil-off gas. Int. Cryocooler Conference, Boulder, 629–635.

    Google Scholar 

  • Moran MJ, Shapiro HN, 2000. Fundamentals of engineering thermodynamics, 4th ed. Wiley, New York.

    Google Scholar 

  • Nanowski D, 2012. Gas plant of ethylene gas carrier and a two stages compression optimization of ethylene as a cargo based on thermodynamic analysis. J. Polish CIMAC, 7(1), 183–190.

    Google Scholar 

  • Ouadha A, En-nacer M, Adjlout L, Imine O, 2005. Exergy analysis of two-stage refrigeration cycle using two natural substitutes of HCFC 22. Int. J. Exergy, 2(1), 14–30. http://dx.doi.org/10.1504/IJEX.2005.006430

    Article  Google Scholar 

  • Ouadha A, En-nacer M, Imine O, 2008. Thermodynamic modelling of a water-to-water heat pump using propane as refrigerant. Int. J. Exergy, 5(4), 451–469. http://dx.doi.org/10.1504/IJEX.2008.019115

    Article  Google Scholar 

  • Ouadha A, Haddad C, En-nacer M, Imine O, 2007. performance comparison of cascade and two-stage refrigeration cycles using natural refrigerants. Proc. 22nd Int. Congress Refrigeration, Beijing, China.

    Google Scholar 

  • Pil CK, Rausand M, Vatn J, 2008. Reliability assessment of reliquefaction systems on LNG carriers. Reliability Eng. System Safety, 93(9), 1345–1353. DOI: 10.1016/j.ress.2006.11.005

    Article  Google Scholar 

  • Romero J, Orosa JA, Oliveira AC, 2012. Research on the Brayton cycle design conditions for reliquefaction cooling of LNG boil off. J. Marine Science Technology, 17(4), 532–541. DOI: 10.1007/s00773-012-0180-3

    Article  Google Scholar 

  • Sayyaadi H, Babaelahi M, 2010. Thermoeconomic optimization of a cryogenic refrigeration cycle for re-liquefaction of the LNG boil-off gas. Int. J. Refrig., 33(6), 1197–1207. DOI: 10.1016/j.ijrefrig.2010.03.008

    Article  Google Scholar 

  • Shin Y, Lee YP, 2009. Design of a boil-off natural gas reliquefaction control system for LNG carriers. Appl. Energy, 86(1), 37–44. DOI: 10.1016/j.apenergy.2008.03.019

    Article  MathSciNet  Google Scholar 

  • Skovrup MJ, Jakobsen A, Rasmussen BD, Andersen SE, 2012). CoolPack (Version: 1.5). Available from: http://en.ipu.dk/Indhold/refrigeration-and-energy-technology/co olpack.aspx

  • Syechev VV, 1983. Les equations différentielles de la thermodynamique. Edition Mir, Moscou.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ouadha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beladjine, B.M., Ouadha, A. & Addad, Y. Thermodynamic analysis of hydrocarbon refrigerants-based ethylene BOG re-liquefaction system. J. Marine. Sci. Appl. 15, 321–330 (2016). https://doi.org/10.1007/s11804-016-1371-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-016-1371-9

Keywords

Navigation