Skip to main content
Log in

Floating Escherichia coli by expressing cyanobacterial gas vesicle genes

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Gas vesicles are hollow, air-filled polyprotein structures that provide the buoyancy to cells. They are found in a variety of prokaryotes. In this study, we isolated a partial gas vesicle protein gene cluster containing gvpA and gvpC20Ψ from Planktothrix rubescens, and inserted it into an expression vector and expressed it in E. coli. The gas vesicle was developed in bacterial cells, which made bacterial cells to float on medium surface. We also amplified gvpA and gvpC20Ψ separately and synthesized an artificial operon by fusing these two genes with the standardized gene expression controlling elements of E. coli. The artificial operon was expressed in E. coli, forming gas vesicles and floating bacteria cells. Our findings verified that the whole set of genes and the overall structure of gas vesicle gene cluster are not necessary for developing gas vesicles in bacteria cells. Two genes, gvpA and gvpC20Ψ, of the gas vesicle gene cluster are sufficient for synthesizing an artificial operon that can develop gas vesicles in bacteria cells. Our findings provided a wide range of applications including easing the harvest of cultured microalgae and bacteria, as well as enriching and remediating aquatic pollutants by constructing gas vesicles in their cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beard, S. J., Handley, B. A., and Walsby, A. E., 2002. Spontaneous mutations in gas vesicle genes of Planktothrix sp. affect gas vesicle production and critical pressure. FEMS Microbiology Letters, 215: 189–195.

    Article  Google Scholar 

  • Beard, S. J., Davis, P. A., Iglesias-Rodrıguez, D., Skulberg, O. M., and Walsby, A. E., 2000. Gas vesicle genes in Planktothrix sp. from Nordic lakes: Strains with weak gas vesicles possess a longer variant of gvpC. Microbiology, 146(8): 2009–2018.

    Google Scholar 

  • Beard, S. J., Handley, B. A., Hayes, P. K., and Walsby A. E., 1999. The diversity of gas vesicle genes in Planktothrix rubescens from Lake Zürich. Microbiology, 145: 2757–2768.

    Google Scholar 

  • Belenky, M., Meyers, R., and Herzfeld, J., 2004. Subunit structure of gas vesicles: A MALDI-TOF mass. Biophysical Journal, 86: 499–505.

    Article  Google Scholar 

  • Berger, S. L., and Kimmel, A. R., 1987. Guide to Molecular Cloning Techniques. Academic Press Inc., Orlando, FL, 812pp.

    Google Scholar 

  • Bright, D. I., and Walsby, A. E., 2000. The daily integral of growth by Planktothrix rubescens calculated from growth rate in culture and irradiance in Lake Zürich. New Phytologist, 146(2): 301–316.

    Article  Google Scholar 

  • Childs, T. S., and Webley, W. C., 2012. In vitro assessment of halobacterial gas vesicles as a Chlamydia vaccine display and delivery system. Vaccine, 30(40): 5942–5948.

    Article  Google Scholar 

  • Chungjatupornchai, W., Senawong, T., and Panyim, S., 1999. Isolation and characterization of Synechococcus PCC7942 promoters: tRNApro gene functions as a promoter. Current Microbiology, 38(4): 210–216.

    Article  Google Scholar 

  • Englert, C., and Pfeifer, F., 1993. Analysis of gas vesicle gene expression in Haloferax mediterranei reveals that GvpA and GvpC are both gas vesicle structural proteins. Journal of Biological Chemistry, 268(13): 9329–9336.

    Google Scholar 

  • Ezzeldin, H. M., Klauda, J. B., and Solares, S. D., 2012. Modeling of the major gas vesicle protein, GvpA: From protein sequence to vesicle wall structure. Journal of Structural Biology, 179: 18–28.

    Article  Google Scholar 

  • Hayes, P. K., and Powell, R. S., 1995. The gvpA/C cluster of Anabaena flos-aquae has multiple copies of a gene encoding GvpA. Archives of Microbiology, 164: 50–57.

    Article  Google Scholar 

  • Hayes, P. K., Buchholz, B., and Walsby, A. E., 1992. Gas vesicles are strengthened by the outer-surface protein GvpC. Archives of Microbiology, 157: 229–234.

    Article  Google Scholar 

  • Hayes, P. K., Lazarus, C. M., Bees, A., Walker, J. E., and Walsby, A. E., 1988. The protein encoded by gvpC is a minor component of gas vesicles isolated from the cyanobacteria Anabaena flos-aquae and Microcystis sp. Molecular Microbiology, 2: 545–552.

    Article  Google Scholar 

  • Holland, D. P., and Walsby, A. E., 2009. Digital recordings of gas-vesicle collapse used to measure turgor pressure and cell-water relations of cyanobacterial cells. Journal of Microbiological Methods, 77(2): 214–222.

    Article  Google Scholar 

  • Marschaus, L., and Pfeifer, F., 2012. A dual promoter region with overlapping activator sequences drives the expression of gas vesicle protein genes in haloarchaea. Microbiology, 158(11): 2815–2825.

    Article  Google Scholar 

  • Miklaszewska, M., Waleron, M., Morin, N., Calusinska, M., Wilmotte, A., de Marsac, N. T., Rippka, R., and Waleron, K., 2012. Elucidation of the gas vesicle gene clusters in cyanobacteria of the genus Arthrospira (Oscillatoriales, Cyanophyta) and correlation with ITS phylogeny. European Journal of Phycology, 47(3): 233–244.

    Article  Google Scholar 

  • Offner, S., Ziese, U., Wanner, G., Typke, D., and Pfeifer, F., 1998. Structural characteristics of halobacterial gas vesicles. Microbiology, 144: 1331–1342.

    Article  Google Scholar 

  • Oren, A., 2013. The function of gas vesicles in halophilic archaea and bacteria: Theories and experimental evidence. Life, 3(1): 1–20.

    Article  Google Scholar 

  • Pfeifer, F., 2012. Distribution, formation and regulation of gas vesicles. Nature Reviews Microbiology, 10: 705–715.

    Article  Google Scholar 

  • Ramsay, J. P., and Salmond, G. P. C., 2012. Quorum sensing-controlled buoyancy through gas vesicles: Intracellular bacterial microcompartments for environmental adaptation. Communicative & Integrative Biology, 5(1): 96–98.

    Article  Google Scholar 

  • Sivertsen, A. C., Bayro, M. J., Belenky, M., Griffin, R. G., and Herzfeld, J., 2010. Solid-state NMR characterization of gas vesicle structure. Biophysical Journal, 99(6): 1932–1939.

    Article  Google Scholar 

  • Shetty, R., Lizarazo, M., Rettberg, R., and Knight, T. F., 2011. Assembly of biobrick standard biological parts using three antibiotic assembly. Methods in Enzymology, 498: 311–326.

    Article  Google Scholar 

  • Strunk, T., Hamacher, K., Hoffgaard, F., Engelhardt, H., Zillig, M. D., Faist, K., Wenzel, W., and Pfeifer, F., 2011. Structural model of the gas vesicle protein GvpA and analysis of GvpA mutants in vivo. Molecular Microbiology, 81(1): 56–68.

    Article  Google Scholar 

  • Tavlaridou, S., Faist, K., Weitzel, K., and Pfeifer, F., 2013. Effect of an overproduction of accessory Gvp proteins on gas vesicle formation in Haloferax volcanii. Extremophiles, 17(2): 277–287.

    Article  Google Scholar 

  • Walsby, A. E., 1994. Gas vesicles. Microbiological Reviews, 58(1): 94–144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Kang, L., Li, J. et al. Floating Escherichia coli by expressing cyanobacterial gas vesicle genes. J. Ocean Univ. China 14, 84–88 (2015). https://doi.org/10.1007/s11802-015-2344-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-015-2344-3

Key words

Navigation