Skip to main content
Log in

Effects of tidal currents on nonlinear internal solitary waves in the South China Sea

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The propagation and fission process of internal solitary waves (ISWs) with amplitudes of about 170 m are simulated in the northeast of the South China Sea (NSCS) by using the generalized Korteweg-de Vries (KdV) equation under continuous stratification. More attention is paid to the effects of the ebb and flood background currents on the fission process of ISWs. This kind of background current is provided by the composed results simulated in terms of monthly mean baroclinic circulation and barotropic tidal current. It is found that the obtained relation of the number of fission solitons to the water depth and stratification is roughly in accordance with the fission law derived by Djordjevic and Redekopp in 1978; however, there exists obvious difference between the effects of the ebb and flood background currents on the wave-lengths of fission solitons (defined as the distance between two neighboring peaks of ISWs). The difference in nonlinearity coefficient α between the ebb and flood background currents is a main cause for the different wave-lengths of fission solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apel, J. R., Holbrook, J. R., Liu, A. K., and Tsai, J. J., 1985. The Sulu Sea internal soliton experiment. Journal of Physical Oceanography, 15: 1625–1651.

    Article  Google Scholar 

  • Beardsley, R. C., Duda, T. F., Lynch, J. F., Irish, J. D., Ramp, S. R., Chiu, C.-S., Tang, T.-Y., Yang, Y.-J., and Fang, G.-H., 2004. Barotropic tide in the Northeast South China Sea. IEEE Journal of Oceanic Engineering, 29(4): 1075–1086.

    Article  Google Scholar 

  • Buijsman, M. C., Kanarska, Y., and McWilliams, J. C., 2010. On the generation and evolution of nonlinear internal waves in the South China Sea. Journal of Geophysical Research, 115, C02012, DOI: 10.1029/2009JC005275.

    Article  Google Scholar 

  • Cai, S., Long, X., Dong, D., and Wang, S., 2008. Background current affects the internal wave structure of the northern South China Sea. Progress in Natural Science, 18(5): 585–589.

    Article  Google Scholar 

  • Chapman, D. C., Ko, D.-S., and Preller, R. H., 2004. A high-resolution numerical modeling study of the subtidal circulation in the Northern South China Sea. IEEE Journal of Oceanic Engineering, 29(4): 1087–1104.

    Article  Google Scholar 

  • Djordjevic, V. D., and Redekopp, L. G., 1978. The fission and disintegration of internal solitary waves moving over two-dimensional topography. Journal of Physical Oceanography, 8: 1016–1024.

    Article  Google Scholar 

  • Duda, T. F., Lynch, J. F., Irish, J. D., Beardsley, R. C., Ramp, S. R., Chiu, C.-S., Tang, T.-Y., and Yang, Y.-J., 2004. Internal tide and nonlinear internal wave behavior at the continental slope in the Northern South China Sea. IEEE Journal of Oceanic Engineering, 29(4): 1105–1130.

    Article  Google Scholar 

  • Farmer, D., Li, Q., and Park, J.-H., 2009. Internal wave observations in the South China Sea: the role of rotation and non-linearity. Atmosphere-Ocean, 47(4): 267–280.

    Article  Google Scholar 

  • Fan, Z. S., Zhang, Y. L., and Song, M., 2008a. A study of SAR remote sensing of internal solitary waves in the north of the South China Sea: I. Simulation of internal tide transformation. Acta Oceanologica Sinica, 27(4): 39–56.

    Google Scholar 

  • Fan, Z. S., Zhang, Y. L., and Song, M., 2008b. A study of SAR remote sensing of internal solitary waves in the north of the South China Sea: II. Simulation of SAR signatures of internal solitary waves. Acta Oceanologica Sinica, 27(5): 36–48.

    Google Scholar 

  • Gerkema, T., 1996. A unified model for the generation and fis sion of internal tides in a rotating ocean. Journal of Marine Research, 54: 421–450.

    Article  Google Scholar 

  • Grimshaw, R., Pelinovsky, E., and Poloukhina, O., 2002. Higher-order Korteweg-de Vries models for internal solitary waves in a stratified shear flow with a free surface. Nonlinear Processes in Geophysics, 9: 221–235.

    Article  Google Scholar 

  • Helfrich, K. R., 2007. Decay and return of internal solitary waves with rotation. Physics of Fluids, 19, 02661, DOI: 10.1063/1.2472509.

    Article  Google Scholar 

  • Helfrich, K. R., 2008. Continuously stratified nonlinear low-mode internal tides. Journal of Marine Research, 66(3): 299–323.

    Article  Google Scholar 

  • Holloway, P. E., Pelinovsky, E., Talipova, T., and Barnes, B., 1997. A nonlinear model of internal tide transformation on the Australian North West Shelf. Journal of Physical Oceanography, 27: 871–896.

    Article  Google Scholar 

  • Holloway, P. E., Pelinovsky, E., and Talipova, T., 1999. A generalized Korteweg-de Vries model of internal tide transformation in the coastal zone. Journal of Geophysical Research, 104: 18333–18350.

    Article  Google Scholar 

  • Klymak, J. M., Pinkel, R., Liu, C.-T., Liu, A. K., and David, L., 2006. Prototypical solitions in the South China Sea. Geophysical Research Lettters, 33, L11607, DOI: 10.1029/2006GL025932.

    Article  Google Scholar 

  • Lamb, K. G., 1994. Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge. Journal of Geophysical Research, 99(C1): 843–864.

    Article  Google Scholar 

  • Lamb, K. G., and Yan, L., 1996. The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly nonlinear theory. Journal of Physical Oceanography, 26: 2712–2734.

    Article  Google Scholar 

  • Lamb, K. G., 1997. Particle transport by nonbreaking, solitary internal waves. Journal of Geophysical Research, 102(C8): 18641–18660.

    Article  Google Scholar 

  • Le, P., Lyard, F., Molines, J. M., Genco, M. L., and Rabilloud, F., 1998. A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-drived data set. Journal of Geophysical Research, 103(C3): 5513–5529.

    Article  Google Scholar 

  • Lien, R.-C., Tang, T.-Y., Chang, M.-H., and D’Asaro, E. A., 2005. Energy of nonlinear internal waves in the South China Sea. Geophysical Research Lettters, 32, L05615, DOI: 10.1029/2004GL022012.

    Article  Google Scholar 

  • Liu, A. K., 1988. Analysis of nonlinear internal waves in the New York Bight. Journal of Geophysical Research, 93(C10): 12317–12329.

    Article  Google Scholar 

  • Liu, A. K., Holbrook, J. R., and Apel, J. R., 1985. Nonlinear internal wave evolution in the Sulu Sea. Journal of Physical Oceanography, 15: 1613–1624.

    Article  Google Scholar 

  • Liu, A. K., Ramp, S. R., Zhao, Y., and Tang, T.-Y., 2004a. A case study of internal solitary wave propagation during ASIAEX 2001. IEEE Journal of Oceanic Engineering, 29(4): 1144–1156.

    Article  Google Scholar 

  • Liu, H. L., Yu, Y. Q., Li, W., and Zhang, X. H., 2004b. Reference Manual for LASG/IAP Climate System Ocean Model (LICOM1.0). Science Press, Beijing, 107pp (in Chinese).

    Google Scholar 

  • Liu, H. L., Li, W., and Zhang, X. H., 2005. Climatology and variability of the Indonesian Throughflow in the eddy-permitting oceanic GCM. Advances in Atmospheric Sciences, 22(4): 496–508.

    Article  Google Scholar 

  • Pelinovsky, E., Shavratsky, S., and Raevsky, M. A., 1977. The Korteweg-de Vries equation for nonstationary internal waves in an inhomogeneous ocean. Izvestiya, Atmospheric and Oceanic Physics, 13: 373–376.

    Google Scholar 

  • Pelinovskii, E. N., Polukhina, O. E., and Lamb, K., 2000. Nonlinear internal waves in the ocean stratified in density and current. Oceanology, 40(6): 757–766.

    Google Scholar 

  • Ramp, S. R., Tang, D., Duda, T. F., Lynch, J. F., Liu, A. K., Chiu, C.-S., Bahr, F., Kim, H. R., and Yang, Y.-J., 2004. Internal solitons in the northeast South China Sea part I: Sources and deep water propagation. IEEE Journal of Oceanic Engineering, 29(4): 1157–1181.

    Article  Google Scholar 

  • Sandstrom, H., and Oakey, N. S., 1995. Dissipation in internal tides and solitary waves. Journal of Physical Oceanography, 25: 604–614.

    Article  Google Scholar 

  • Shi, X. G., Fan, Z. S., and Liu, H. L., 2009. A numerical calculation method of eigenvalue problem of nonlinear internal waves. Journal of Hydrodynamics Ser. B, 21(3): 373–378.

    Article  Google Scholar 

  • Warn-Varnas, A. C., Chin-Bing, S. A., King, D. B., Hawkins, J. A., Lamb, K. G., and Teixeira, M., 2005. Yellow Sea oceanic-acoustic solitary wave modeling studies. Journal of Geophysical Research, 110, C08001, DOI: 10.1029/2004JC 002801.

    Article  Google Scholar 

  • Warn-Varnas, A. C., Hawkins, J., Lamb, K. G., Piacsek, S., Chin-Bing, S., King, D., and Burgos, G., 2010. Solitary wave generation dynamics at Luzon Strait. Ocean Modelling, 31(1-2): 9–27.

    Article  Google Scholar 

  • Xue, H. J., Chai, F., Xu, J. P., et al., 2001. The Study of A Circulation Model and Characteristics of Meso-Scale Eddies in the South China Sea. Oceanography in China (13). China Ocean Press, Beijing, China. 254pp (in Chinese).

    Google Scholar 

  • Yang, Y.-J., Tang, T.-Y., Chang, M.-H., Liu, A. K., Hsu, M.-K., and Ramp, S. R., 2004. Solitons northeast of TungSha Island during the ASIAEX pilot studies. IEEE Journal of Oceanic Engineering, 29(4): 1182–1199.

    Article  Google Scholar 

  • Yang, Y.-J., Fang, Y.-C., Chang, M.-H., Ramp, S. R., Kao, C.-C., and Tang, T.-Y., 2009. Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea. Journal of Geophysical Research, 114, C10003, DOI: 10.1029/2009JC005318.

    Article  Google Scholar 

  • Zhao, Z., and Alford, M. H., 2006. Source and propagation of internal solitary waves in the northeastern South China Sea. Journal of Geophysical Research, 111, C11012, DOI: 10.1029/2006JC003644.

    Article  Google Scholar 

  • Zheng, Q., Yuan, Y., Klemas, V., and Yan, X.-H., 2001. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic width. Journal of Geophysical Research, 106(C11): 31415–31423.

    Article  Google Scholar 

  • Zhou, X., and Grimshaw, R., 1989. The effect of variable currents on internal solitary waves. Dynamics of Atmospheres and Oceans, 14: 17–39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisong Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Z., Shi, X., Liu, A.K. et al. Effects of tidal currents on nonlinear internal solitary waves in the South China Sea. J. Ocean Univ. China 12, 13–22 (2013). https://doi.org/10.1007/s11802-013-1870-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-013-1870-0

Key words

Navigation