Skip to main content
Log in

Novel multi-heterostructured Pt-BiOBr/TiO2 nanotube arrays with remarkable visible-light photocatalytic performance and stability

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Unique multiple heterojunction of Pt-BiOBr/TiO2 nanotube arrays (Pt-BiOBr/TNTAs) was achived by successively loading both Pt nanoparticles (NPs) and BiOBr nanoflkes (NFs) on surface of ordered and spaced TiO2 nanotubes (NTs) using anodization followed by solvothermal and sequential chemical bath deposition (S-CBD) method. The fabricated Pt-BiOBr/TNTAs were fully characterized, and the photocatalytic (PC) activity and stability of Pt-BiOBr/TNTAs toward degradation of methyl orange (MO) under visible-light irradiation (λ>400 nm) were evaluated. The results reveal that multiple heterostructures of Pt/TiO2, Pt/BiOBr and BiOBr/TiO2 are constructed among TNTAs substrate, Pt NPs and BiOBr NFs, and the hybrid Pt-BiOBr/TNTAs catalyst exhibits remarkable visible-light PC activity, favourable reusability and long-term stability. The combined effect of several factors may contribute to the remarkable PC performance, including strong visible-light absorption by both Pt NPs and BiOBr NFs, lower recombination rate of photo-generated electrons and holes attributed to the multiple heterojunction, microstructures for facile light injection and adsorption as well as efficient mass transport, and larger specific surface area for enhancing light absorption, increasing the effective contact area between the absorbed dye molecules and catalyst and benefiting the molecule transport of reactants or products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Bai and B. X. Zhou, Chemical Reviews 114, 10131 (2014).

    Article  Google Scholar 

  2. C. A. Grimes, Journal of Materials Chemistry 17, 1451 (2007).

    Article  Google Scholar 

  3. A. E. R. Mohamed and S. Rohani, Energy & Environmental Science 4, 1065 (2011).

    Article  Google Scholar 

  4. B. L. Xu, C. X. Liu, H. Y. Sun and Y. R. Zhong, Optoelectronics Letters 10, 84 (2014).

    Article  ADS  Google Scholar 

  5. S. G. Kumar and L. G. Devi, Journal of Physical Chemistry A 115, 13211 (2011).

    Article  ADS  Google Scholar 

  6. K. L. Zhang, C. M. Liu, F. Q. Huang, C. Zheng and W. D. Wang, Applied Catalysis B: Environmental 68, 125 (2006).

    Article  Google Scholar 

  7. H. F. Cheng, B. B. Huang and Y. Dai, Nanoscale 6, 2009 (2014).

    Article  ADS  Google Scholar 

  8. J. J. Hu, J. Q. Liu, L. L. Ruan, H. D. Bian, X. Y. Zhang and Y. C. Wu, Optoelectronics Letters 11, 5 (2015).

    Article  ADS  Google Scholar 

  9. J. Q. Liu, L. L.Ruan, S. B. Adeloju and Y. C. Wu, Dalton Transactions 43, 1706 (2014).

    Article  Google Scholar 

  10. L. L. Ruan, J. Q. Liu, Q. Zhou, J. J. Hu, G. Q. Xu, X. Shu and Y. C. Wu, New Journal of Chemistry 38, 2506 (2014).

    Article  Google Scholar 

  11. H. F. Cheng, B. B. Huang, P. Wang, Z. Y. Wang, Z. Z. Lou, J. P. Wang, X. Y. Qin, X. Y. Zhang and Y. Dai, Chemical Communications 47, 7054 (2011).

    Article  Google Scholar 

  12. M. S. P. Francisco, V. R. Mastelaro, P. A. P. Nascente and A. O. Florentino, Journal of Physical Chemistry B 105, 10515 (2001).

    Article  Google Scholar 

  13. K. Siuzdak, M. Szkoda, M. Sawczaka and A. Lisowska-Oleksiakb, New Journal of Chemistry 39, 2741 (2015).

    Article  Google Scholar 

  14. X. L. Tan, Q. H. Fan, X. K. Wang and B. Grambow, Environmental Science & Technology 43, 3115 (2009).

    Article  ADS  Google Scholar 

  15. Z. K. Zheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai and M. H. Whangbo, Journal of Materials Chemistry 21, 9079 (2011).

    Article  Google Scholar 

  16. J. X. Xia, S. Yin, H. M. Li, H. Xu, L. Xu and Y. G. Xu, Dalton Transactions 40, 5249 (2011).

    Article  Google Scholar 

  17. H. D. Bian, X. Shu, J. F. Zhang, B. Yuan, Y. Wang, L. J. Liu, G. Q. Xu, Z. Chen and Y. C Wu, Chemistry-An Asian Journal 8, 2746 (2013).

    Article  Google Scholar 

  18. A Tanaka, K Hashimoto and H. Kominami, Journal of the American Chemical Society 136, 586 (2014).

    Article  Google Scholar 

  19. Y. L. Lee and Y. S. Lo, Advanced Functional Materials 19, 604 (2009).

    Article  Google Scholar 

  20. C. L. Yu, F. F. Cao, G. Li, R. F. Wei, J. C. Yu, R. C. Jin, Q. Z. Fan and C. Y. Wang, Separation and Purification Technology 120, 110 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-qin Liu  (刘家琴).

Additional information

This work has been supported by the National Natural Science Foundation of China (Nos.51402078 and 51302060), Anhui Provincial Natural Science Foundation (No.1408085QE85), and the Young Scholar Enhancement Foundation (Plan B) of Hefei University of Technology in China (No.JZ2016HGTB0711).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Jq., Dai, Mj., Ruan, Ll. et al. Novel multi-heterostructured Pt-BiOBr/TiO2 nanotube arrays with remarkable visible-light photocatalytic performance and stability. Optoelectron. Lett. 13, 165–171 (2017). https://doi.org/10.1007/s11801-017-7023-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-017-7023-8

Navigation