Skip to main content
Log in

Inference Rules in Nelson’s Logics, Admissibility and Weak Admissibility

  • Published:
Logica Universalis Aims and scope Submit manuscript

Abstract

Our paper aims to investigate inference rules for Nelson’s logics and to discuss possible ways to determine admissibility of inference rules in such logics. We will use the technique offered originally for intuitionistic logic and paraconsistent minimal Johannson’s logic. However, the adaptation is not an easy and evident task since Nelson’s logics do not enjoy replacement of equivalences rule. Therefore we consider and compare standard admissibility and weak admissibility. Our paper founds algorithms for recognizing weak admissibility and admissibility itself – for restricted cases, to show the problems arising in the course of study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Almukdad A., Nelson D.: Constructible falsity and inexact predicates. J. Symbo. Log. 49, 231–233 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Babenyshev S., Rybakov V.: Linear temporal logic LTL: basis for admissible rules. J. Log. Comput. 21(2), 157–177 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Babenyshev S., Rybakov V.: Unification in linear temporal logic LTL. Ann. Pure Appl. Logic 162(12), 991–1000 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cignoli R., Busaniche M.: Constructive logic with strong negation as a substructural logic. J. Log. Comput 20(4), 761–793 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Iemhoff R.: On the admissible rules of intuitionistic propositional logic. J. Symb. Log. 66(1), 281–294 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Iemhoff, R.: Towards a proof system for admissibility. CSL-2003 255–270 (2003)

  7. Iemhoff R., Metcalfe G.: Proof theory for admissible rules. Ann. Pure Appl. Logic 159(1–2), 171–186 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jerabek E.: Bases of admissible rules of Lukasiewicz logic. J. Log. Comput. 20(6), 1149–1163 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jerabek E.: Admissible rules of Lukasiewicz logic. J. Log. Comput. 20(2), 425–447 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jerabek E.: Independent bases of admissible rules. Log. J. IGPL 16(3), 249–267 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jerabek E.: Complexity of admissible rules. Arch. Math. Log. 46(2), 73–92 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jerabek E.: Admissible rules of modal logics. J. Log. Comput. 15(4), 411–431 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ghilardi S.: Unification in intuitionistic logic. J. Symb. Log. 64(2), 859–880 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gurevich Y.: Intuitionistic logic with strong negation. Stud. Log. 36(1–2), 49–59 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  15. Friedman, H.: One hundred and two problems in mathematical logic. J. Symb. Log. 40(3), 113–130 (1975)

  16. Johansson, I.: Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus. Compos. Math. 4, 119–136 (1937)

  17. Latkin, E.I.: Generalized Kripke semantics for Nelson’s logic. Algebra Log. 49(5), 426–443 (2010)

  18. López-Escobar, E.G.K.: Refutability and elementary number theory. Indag. Math. 34, 362-374 (1972)

  19. Metcalfe G.: A sequent calculus for constructive logic with strong negation as a substructural logic. Bull. Sect. Log. 38(1–2), 5–11 (2009)

    MATH  MathSciNet  Google Scholar 

  20. Nelson D.: Constructible falsity. J. Symb. Log. 14(2), 16–26 (1949)

    Article  MATH  Google Scholar 

  21. Odintsov, S.P.: Algebraic semantics for paraconsistent Nelson’s logic. J. Log. Comput. 13(4), 453–468 (2003)

  22. Odintsov S.P.: The class of extensions of Nelson’s paraconsistent logic. Stud. Log. 80(2–3), 293–322 (2005)

    MathSciNet  Google Scholar 

  23. Odintsov, S., Pearce, D.: Routley semantics for answer sets. In: Proceedings of 8th International Conference on Logic Programming and Nonmonotonic Reasoning, LNCS 3662, pp. 343–355 (2005)

  24. Odintsov, S.P., Rybakov, V.V.: Unification and admissible rules for paraconsistent minimal Johannson’s logic J and positive intuitionistic logic IPC +. Ann. Pure Appl. Log. 164, 771–784 (2013)

  25. Priest, G., Tanaka, K., Weber, Z.: Paraconsistent logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Fall 2013 Edition). (2013)

  26. Rasiowa, H.: N-Lattices and constructive logic with strong negation. Fund. Math. 46, 61–80 (1958)

  27. Rasiowa, H.: An Algebraic Approach to Non-Classical Logic. PWN, Warsaw and North-Holland, Amsterdam (1974)

  28. Rivieccio U.: Implicative twist-structures. Algebra Univ. 71(2), 155–185 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Routley R.: Semantical analyses of propositional systems of Fitch and Nelson. Stud. Log. 33(3), 283–298 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rybakov, V.: A criterion for admissibility of rules in the modal system S4 and the intuitionistic logic. Algebra Log. 23(5), 369–384 (1984)

  31. Rybakov V.V.: Problems of substitution and admissibility in the modal system grz and in intuitionistic propositional calculus. Ann. Pure Appl. Log. 50(1), 71–106 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rybakov, V.V.: Rules of inference with parameters for intuitionistic logic. J. Symb. Logic 57(3), 912–923 (1992)

  33. Rybakov, V.V.: Construction of an explicit basis for rules admissible in modal system S4. Math. Log. Q. 47(4), 441–446 (2001)

  34. Rybakov, V.V.: Logics with the universal modality and admissible consecutions. J. Appl. Non-Class. Log. 17(3), 383–396 (2007)

  35. Rybakov V.V.: Linear temporal logic with until and next. Logical consecutions. Ann. Pure Appl. Logic 155(1), 32–45 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Rybakov, V.V.: Multi-modal and temporal logics with universal formula—reduction of admissibility to validity and unification. J. Log. Comput. 18(4), 509–519 (2008)

  37. Rybakov V.V.: Rules admissible in transitive temporal logic TS4, sufficient condition. Theor. Comput. Sci. 411(50), 4323–4332 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Spinks, M., Veroff, R.: Constructive logic with strong negation is a substructural logic I. Stud. Log. 88(3), 325–348 (2008)

  39. Spinks, M., Veroff, R.: Constructive logic with strong negation is a substructural logic II. Stud. Log. 89(3), 401–425 (2008)

  40. Thomason R.H.: A semantical study of constructible falsity. Z. Math. Logik Grundl. Math. 15, 247–257 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  41. Vorob’ev, N.N.: A constructive propositional calculus with strong negation. Doklady Akademii Nauk SSSR 85, 465–468 (1952)

  42. Vorob’ev N.N.: The problem of deducibility in constructive propositional calculus with strong negation. Doklady Akademii Nauk SSSR 85, 689–692 (1952)

    MathSciNet  Google Scholar 

  43. Wansing, H.: Negation. In: Goble, L.: (ed.) The Blackwell Guide to Philosophical Logic. Basil Blackwell Publishers, Cambridge, pp. 415–436 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Odintsov.

Additional information

This work was supported by Russian Foundation for Basic Research, Project No. 12-01-00168-a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odintsov, S., Rybakov, V. Inference Rules in Nelson’s Logics, Admissibility and Weak Admissibility. Log. Univers. 9, 93–120 (2015). https://doi.org/10.1007/s11787-014-0110-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11787-014-0110-8

Mathematics Subject Classification

Keywords

Navigation