Skip to main content
Log in

Structural Properties of Word Representable Graphs

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Given a word \(w=w_1w_2\cdots w_n\) of length n over an ordered alphabet \(\Sigma _k\), we construct a graph \(G(w)=(V(w), E(w))\) such that V(w) has n vertices labeled \(1, 2,\ldots , n\) and for \(i, j \in V(w)\), \((i, j) \in E(w)\) if and only if \(w_iw_j\) is a scattered subword of w of the form \(a_{t}a_{t+1}\), \(a_t \in \Sigma _k\), for some \(1 \le t \le k-1\) with the ordering \(a_t<a_{t+1}\). A graph is said to be Parikh word representable if there exists a word w over \(\Sigma _k\) such that \(G=G(w)\). In this paper we characterize all Parikh word representable graphs over the binary alphabet in terms of chordal bipartite graphs. It is well known that the graph isomorphism (GI) problem for chordal bipartite graph is GI complete. The GI problem for a subclass of (6, 2) chordal bipartite graphs has been addressed. The notion of graph powers is a well studied topic in graph theory and its applications. We also investigate a bipartite analogue of graph powers of Parikh word representable graphs. In fact we show that for G(w), \(G(w)^{[3]}\) is a complete bipartite graph, for any word w over binary alphabet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parikh, R.J.: On context free languages. J. Assoc. Comput. Mach. 4, 570–581 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mateescu, A., Salomaa, A., Salomaa, K., Yu, S.: A sharpening of the Parikh mapping. Theor. Inform. Appl. 35(6), 551–564 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atanasiu, A.: Binary amiable words. Int. J. Found. Comput. Sci. 18(2), 387–400 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kitaev, S., Seif, S.: Word problem of the Perkins semigroup via directed acyclic graphs. Order 25(3), 177–194 (2008)

  5. Seif, S.: Monoids with sub-log-exponential free spectra. J. Pure Appl. Algebra 212(5), 1162–1174 (2008)

  6. Uherara, R., Toda, S., Nagoya, T.: Graph Isomorphism completeness for chordal bipartite graphs and strongly chordal graphs. Discrete Appl. Math. 145(3), 379–482 (2004)

  7. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1983)

    MATH  Google Scholar 

  9. Dahlhaus, E., Duchet, P.: On strongly chordal graphs. Ars Combinatoria 24B, 23–30 (1987)

    MathSciNet  MATH  Google Scholar 

  10. Chandran, L.S., Francis, M.C., Mathew, R.: Chordal bipartite graphs with high boxicity. Graphs Comb. 27(3), 353–362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Okamoto, Y., Otachi, Y., Uehara, R.: On bipartite powers of bigraphs. Discrete Math. Theor. Comput. Sci. 14(2), 11–20 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Akiyama, J., Haray, F.: A graph and its complement with specified properties I: connectivity. Int. J. Math. Math. Sci. 2(2), 223–228 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. J. Graph Theory 46(4), 313–327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Takasuga, M., Hirata, T.: A necessary and sufficient condition for a bipartite distance-hereditary graph to be Hamiltonian. Lect. Notes Comput. Sci. 8296, 143–149 (2013)

    Article  MATH  Google Scholar 

  15. Prisner, E.: Graph Dynamics. Longman, Harlow (1995)

    MATH  Google Scholar 

  16. Chen, M., Chang, G.J.: Families of graphs closed under taking powers. Graphs Comb. 17, 207–212 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Raychaudhuri, A.: On powers of interval and unit interval graphs. Congressus Numerantium 59, 235–242 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpana Mahalingam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, S., Mahalingam, K. Structural Properties of Word Representable Graphs. Math.Comput.Sci. 10, 209–222 (2016). https://doi.org/10.1007/s11786-016-0257-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-016-0257-1

Keywords

Mathematics Subject Classification

Navigation