Skip to main content
Log in

On the Optimal Triangulation of Convex Hypersurfaces, Whose Vertices Lie in Ambient Space

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Let \({\Sigma}\) be a strictly convex (hyper-)surface, S m an optimal triangulation (piecewise linear in ambient space) of \({\Sigma}\) whose m vertices lie on \({\Sigma}\) and \({\tilde{S}_m}\) an optimal triangulation of \({\Sigma}\) with m vertices. Here we use optimal in the sense of minimizing \({d_H(S_m, \Sigma)}\), where \({d_H}\) denotes the Hausdorff distance. In ‘Lagerungen in der Ebene, auf der Kugel und im Raum’ Fejes Tóth conjectured that the leading term in the asymptotic development of \({d_H(S_m, \Sigma)}\) in m is twice that of \({d_H(\tilde{S}_m, \Sigma)}\). This statement is proven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A d :

Fejes Tóth’s approximation parameter

CH:

Convex hull of a subset of \({\mathbb{R}^d}\)

C :

Convex body

d H :

Hausdorff distance

\({\kappa_d}\) :

Volume of the d-dimensional ball, that is \({\pi ^{d/2} / \Gamma (1+d/2)}\).

K :

Gaussian curvature

L :

Line segment contained in a hypersurface

m :

Number of vertices

m t :

Number of triangles (only 2 dimensional case)

OL p :

Hyperplane orthogonal to the line segment L going through \({p \in L}\)

P m :

Polygon/polytope with m vertices

\({P_m^{{\rm in}}}\) :

Inscribed polygon/polytope with m vertices

S m :

Simplicial complex with m vertices

\({S_m^{{\rm on}}}\) :

Simplicial complex whose m vertices lie on the hypersurface (often at a stage where the complex is not yet prover to be convex)

\({\Sigma}\) :

Hypersurface

\({\theta_d}\) :

The optimal covering density of Euclidean space by unit balls

\({U(X,\epsilon) }\) :

\({\epsilon}\) neighbourhood of X

\({v_i, \tilde{v}_i}\) :

Vertices

V i :

Set of vertices

References

  1. Federer H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fejes Tóth L.: Lagerungen in der Ebene, auf der Kugel und im Raum. Springer, Berlin, Göttingen, Heidelberg (1953)

    Book  MATH  Google Scholar 

  3. Gruber P.M.: Assymptotic estimates for best and stepwise approximation of convex bodies I. Forum Math. 5, 281–297 (1993)

    MATH  MathSciNet  Google Scholar 

  4. Gruber P.M.: Assymptotic estimates for best and stepwise approximation of convex bodies II. Forum Math. 5, 521–538 (1993)

    MATH  MathSciNet  Google Scholar 

  5. Munkres J.R.: Topology. Prentice-Hall, Upper Saddle River (2000)

    MATH  Google Scholar 

  6. Rogers C.A.: Packing and Covering. Cambridge University Press, Cambridge (1964)

    MATH  Google Scholar 

  7. Schneider R.: Zur optimalen approximation konvexer hyperflächen durch polyeder. Math. Ann. 256, 289–301 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. M. J. Wintraecken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wintraecken, M.H.M.J., Vegter, G. On the Optimal Triangulation of Convex Hypersurfaces, Whose Vertices Lie in Ambient Space. Math.Comput.Sci. 9, 345–353 (2015). https://doi.org/10.1007/s11786-014-0216-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-014-0216-7

Keywords

Mathematics Subject Classification

Navigation