Skip to main content
Log in

Abstract

We present two algorithms that compute the Newton polytope of a polynomial f defining a hypersurface \({\mathcal{H}}\) in \({\mathbb{C}^n}\) using numerical computation. The first algorithm assumes that we may only compute values of f—this may occur if f is given as a straight-line program, as a determinant, or as an oracle. The second algorithm assumes that \({\mathcal{H}}\) is represented numerically via a witness set. That is, it computes the Newton polytope of \({\mathcal{H}}\) using only the ability to compute numerical representatives of its intersections with lines. Such witness set representations are readily obtained when \({\mathcal{H}}\) is the image of a map or is a discriminant. We use the second algorithm to compute a face of the Newton polytope of the Lüroth invariant, as well as its restriction to that face.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Basson, R., Lercier, R., Ritzenthaler, C., Sijsling, J.: An explicit expression of the Lüroth invariant, ISSAC 13, pp. 31–36. ACM, New York (2013)

  2. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for numerical algebraic geometry. Available at http://bertini.nd.edu

  3. Bates D.J., Hauenstein J.D., McCoy T.M., Peterson C., Sommese A.J.: Recovering exact results from inexact numerical data in algebraic geometry. Exp. Math. 22(1), 38–50 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bergman G.M.: The logarithmic limit-set of an algebraic variety. Trans. Am. Math. Soc. 157, 459–469 (1971)

    Article  MathSciNet  Google Scholar 

  5. Bieri R., Groves J.R.J.: The geometry of the set of characters induced by valuations. J. Reine Angew. Math. 347, 168–195 (1984)

    MATH  MathSciNet  Google Scholar 

  6. Chand D.R., Kapur S.S.: An algorithm for convex polytopes. J. Assoc. Comput. Mach. 17, 78–86 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  7. Corless, R., Giesbrecht, M., Kotsireas, I., Watt, S.: Numerical implicitization of parametric hypersurfaces with linear algebra. Artificial Intelligence and Symbolic Computation, Lecture Notes in Computer Science, vol. 1930, pp. 174–183. Springer, Berlin (2000)

  8. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms, 3rd edn. Undergraduate Texts in Mathematics. Springer, New York (2007)

  9. Dayton, B.H., Zeng, Z.: Computing the multiplicity structure in solving polynomial systems. ISSAC’05, pp. 116–123. ACM, New York (2005)

  10. Dolgachev I.V.: Classical algebraic geometry: a modern view. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  11. Edge W.L.: Determinantal representations of x 4 + y 4 + z 4. Math. Proc. Cambridge Phil. Soc. 34, 6–21 (1938)

    Article  Google Scholar 

  12. Emiris I.Z., Konaxis C., Palios L.: Computing the Newton polygon of the implicit equation. Math. Comput. Sci. 4(1), 25–44 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Emiris, I.Z., Kotsireas, I.: Implicitization exploiting sparseness. In: Dutta, D., Smid, M., Janardan, R., (eds) Geometric and Algorithmic Aspects of Computer-aided Design and Manufacturing, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 67, pp. 281–298. American Mathematical Society, Providence RI (2005)

  14. Esterov A.: Newton polyhedra of discriminants of projections. Discrete Comput. Geom. 44(1), 96–148 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Esterov A., Khovanskii A.: Elimination theory and Newton polytopes. Funct. Anal. Other Math. 2(1), 45–71 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Grünbaum, B.: Convex polytopes, 2nd edn. Graduate Texts in Mathematics, vol. 221. Springer, New York (2003). Prepared and with a preface by V. Kaibel, V. Klee and G.M. Ziegler.

  17. Hauenstein J.D., Sommese A.J.: Witness sets of projections. Appl. Math. Comput. 217(7), 3349–3354 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hauenstein J.D., Sommese A.J.: Membership tests for images of algebraic sets by linear projections. Appl. Math. Comput. 219(12), 6809–6818 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hauenstein J.D., Wampler C.W.: Isosingular sets and deflation. Found. Comput. Math. 13(3), 371–403 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Huber B., Verschelde J.: Polyhedral end games for polynomial continuation. Numer. Algorithms 18, 91–108 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Huggins, P.: iB4e: a software framework for parametrizing specialized LP problems, Mathematical software—ICMS 2006, Lecture Notes in Computer Science, vol. 4151, pp. 245–247. Springer, Berlin (2006)

  22. Jensen A., Yu J.: Computing tropical resultants. J. Algebra 387, 287–319 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Leykin A., Verschelde J., Zhao A.: Newton’s method with deflation for isolated singularities of polynomial systems. Theor. Comput. Sci. 359(1–3), 111–122 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Leykin, A., Verschelde, J., Zhao, A.: Higher-order deflation for polynomial systems with isolated singular solutions, Algorithms in algebraic geometry, IMA Volumes in Mathematics and its Applications, vol. 146, pp. 79–97. Springer, New York (2008)

  25. Lüroth J.: Einige Eigenschaften einer gewissen Gattung von Curven vierten Ordnung. Math. Ann. 1, 37–53 (1869)

    Article  MATH  MathSciNet  Google Scholar 

  26. Morley F.: On the Lüroth quartic curve. Am. J. Math. 41, 279–282 (1919)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ojika T.: Modified deflation algorithm for the solution of singular problems. I. A system of nonlinear algebraic equations. J. Math. Anal. Appl. 123(1), 199–221 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ojika T., Watanabe S., Mitsui T.: Deflation algorithm for the multiple roots of a system of nonlinear equations. J. Math. Anal. Appl. 96(2), 463–479 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  29. Plaumann D., Sturmfels B., Vinzant C.: Quartic curves and their bitangents. J. Symb. Comput. 46(6), 712–733 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sommese, A.J., Wampler II, C.W.: The numerical solution of systems of polynomials arising in engineering and science. World Scientific Publishing Co. Pvt. Ltd., Hackensack (2005)

  31. Sturmfels B., Tevelev J.: Elimination theory for tropical varieties. Math. Res. Lett. 15(3), 543–562 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sturmfels, B., Tevelev, J., Yu, J.: The Newton polytope of the implicit equation. Mosc. Math. J. 7(2), 327–346, 351 (2007)

  33. Sturmfels, B., Yu, J.: Tropical implicitization and mixed fiber polytopese. In: Stillman, M., Verschelde, J., Takayama, N. (eds) Software for Algebraic Geometry, IMA Volumes in Mathematics and its Applications, vol. 148, pp. 111–131. Springer, Berlin (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Sottile.

Additional information

Research of both authors supported by NSF grant DMS-0915211 and Institut Mittag-Leffler (Djursholm, Sweden). Research of Hauenstein also supported by NSF grant DMS-1262428.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauenstein, J.D., Sottile, F. Newton Polytopes and Witness Sets. Math.Comput.Sci. 8, 235–251 (2014). https://doi.org/10.1007/s11786-014-0189-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-014-0189-6

Keywords

Mathematics Subject Classification (1991)

Navigation