Skip to main content
Log in

Improved Agreeing-Gluing Algorithm

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Asymptotical complexity of solving a system of sparse algebraic equations over finite fields is studied here. An equation is called sparse if it depends on a bounded number of variables. Finding efficiently solutions to the system of such equations is an underlying hard problem in the cryptanalysis of modern ciphers. New deterministic Improved Agreeing-Gluing Algorithm is introduced. The expected running time of the algorithm on uniformly random instances of the problem is rigorously estimated. The estimate is at present the best theoretical bound on the complexity of solving average instances of the problem. In particular, this is a significant improvement over those in our earlier papers (Semaev, Des Codes Cryptogr 49:47–60, 2008; Semaev, SIAM J Comput 39:388–409 2009). In sparse Boolean equations a gap between the present worst case and the average time complexity of the problem has significantly increased. We formulate Average Time Complexity Conjecture. If proved that will have far-reaching consequences in the field of cryptanalysis and in computing in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouillaguet, C., Chen, H.-C. K., Cheng, C.-M., Chou, T., Niederhagen, R., Shamir, A., Yang, B.-Y.: Fast exhaustive search for polynomial systems in F 2. IACR ePrint Archive, report 2010/313

  2. Bardet, M., Faugére, J.-C., Salvy, B.: Complexity of Gröbner basis computation for semi-regular overdetermined sequences over F 2 with solutions in F 2. Research report RR–5049, INRIA (2003)

  3. Bardet, M., Faugére, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic Behaviour of the Degree of Regularity of Semi-Regular Polynomial Systems. In: MEGA (2005)

  4. Buchberger B.: Theoretical basis for the reduction of polynomials to canonical forms. SIGSAM Bull. 39, 19–24 (1976)

    MathSciNet  Google Scholar 

  5. Courant R.: Differential and Integral Calculus, vol. 1. Interscience Publishers, New York (1988)

    Book  Google Scholar 

  6. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption standard. In: Cryptogr. and Coding, LNCS 4887, pp. 152–169. Springer, New York (2007)

  7. Dantsin E., Goerdt A., Hirsch E.A., Kannan R., Kleinberg J.M., Papadimitriou C.H., Raghavan P., Schšning U.: A deterministic (2−2/(k + 1))n algorithm for k-SAT based on local search. Theor. Comput. Sci. 289, 69–83 (2002)

    Article  MATH  Google Scholar 

  8. Eén, N., Sörensson, N.: MiniSat home page. http://minisat.se/

  9. Faugère J.-C.: A new efficient algorithm for computing Gršbner bases (F4). J. Pure Appl. Algebra 139, 61–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: ISSAC 2002, pp. 75–83. ACM Press, New York (2002)

  11. Iwama K.: Worst-Case Upper Bounds for kSAT. Bull. EATCS 82, 61–71 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Iwama, K., Seto, K., Takai, T., Tamaki, S.: Improved randomised algorithms for 3-SAT. In: ISAAC 2010, Part I, LNCS 6506, pp. 73–84 (2010)

  13. Kolchin V., Sevast’yanov A., Chistyakov V.: Random Allocations. Wiley, New York (1978)

    Google Scholar 

  14. Lazard, D.: Gröbner-bases, Gaussian elimination and resolution of systems of algebraic equations. In: EUROCAL, pp. 146–156 (1983)

  15. MAPLE home page. http://www.maplesoft.com

  16. Papadimitriou, C.H.: On selecting a satisfying truth assignment. In: Proc. FOCS’91, pp. 163–169 (1991)

  17. Raddum, H.: Solving non-linear sparse equation systems over GF(2) using graphs. University of Bergen (2004, preprint)

  18. Raddum H., Semaev I.: Solving multiple right hand sides linear equations. Des. Codes Cryptogr. 49, 147–160 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schöning U.: A probabilistic algorithm for k-Sat based on limited local search and restart. Algoritmica 32, 615–623 (2002)

    Article  MATH  Google Scholar 

  20. Semaev I.: On solving sparse algebraic equations over finite fields. Des. Codes Cryptogr. 49, 47–60 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Semaev I.: Sparse algebraic equations over finite fields. SIAM J. Comput. 39, 388–409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Semaev I., Mikus M.: Methods to solve algebraic equations in cryptanalysis. Tatra Mt. Math. Publ. 45, 107–136 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Semaev, I.: Improved agreeing-gluing algorithm. 2nd Int. Conf. on Symb. Comp. and Crypt., Royal Holloway, University of London, pp. 73–88 (2010)

  24. Semaev I.: Sparse Boolean equations and circuit lattices. Des. Codes Cryptogr. 59, 349–364 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schilling, T.E., Raddum, H.: Solving equation systems by agreeing and learning. In: WAIFI 2010, LNCS 6087, pp. 151–165. Springer, Berlin (2010)

  26. Wiedemann D.H.: Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory 32, 54–62 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang B.-Y., Chen J.-M., Courtois N.: On Asymptotic Security Estimates in XL and Gröbner Bases-Related Algebraic Cryptanalysis, LNCS 3269, pp. 401–413. Springer, Berlin (2004)

    Google Scholar 

  28. Zakrevskij, A., Vasilkova, I.: Reducing large systems of Boolean equations. 4th Int. workshop on Boolean problems, Freiberg University (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Semaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semaev, I. Improved Agreeing-Gluing Algorithm. Math.Comput.Sci. 7, 321–339 (2013). https://doi.org/10.1007/s11786-013-0163-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-013-0163-8

Keywords

Mathematics Subject Classification (2010)

Navigation