Skip to main content
Log in

Composition Operators on Generalized Hardy Spaces

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We study the composition operators \(f\mapsto f\circ \phi \) on generalized analytic function spaces named generalized Hardy spaces, on bounded domains of \(\mathbb {C}\), for holomorphic functions \(\phi \) with uniformly bounded derivative. In particular, we provide necessary and/or sufficient conditions on \(\phi \), depending on the geometry of the domains, ensuring that these operators are bounded, invertible, or isometric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.: Lectures on Quasiconformal Mappings. Wadsworth and Brooks/Cole Advanced Books and Software, Monterey (1987)

  2. Alessandrini, G., Rondi, L.: Stable determination of a crack in a planar inhomogeneous conductor. SIAM J. Math. Anal. 30(2), 326–340 (1998)

    Article  MathSciNet  Google Scholar 

  3. Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. 163(2), 265–299 (2006)

  4. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Graduate Texts in Mathematics, vol. 137, 2nd edn. Springer, New York (2001)

  5. Baratchart, L., Borichev, A., Chaabi, S.: Pseudo-holomorphic functions at the critical exponent. J. Eur. Math. Soc. (to appear). http://hal.inria.fr/hal-00824224

  6. Baratchart, L., Fischer, Y., Leblond, J.: Dirichlet/Neumann problems and Hardy classes for the planar conductivity equation. Complex Var. Elliptic Equ. 59(4), 504–538 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baratchart, L., Leblond, J., Rigat, S., Russ, E.: Hardy spaces of the conjugate Beltrami equation. J. Funct. Anal. 259(2), 384–427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bayart, F.: Similarity to an isometry of a composition operator. Proc. Am. Math. Soc. 131(6), 1789–1791 (2002)

    Article  MathSciNet  Google Scholar 

  9. Bers, L., Nirenberg, L.: On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, pp. 111–138. Conv. Int. EDP, Cremonese, Roma (1954)

  10. Bhanu, U., Sharma, S.D.: Invertible and isometric composition operators on vector-valued Hardy spaces. Bull. Korean Math. Soc. 41, 413–418 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boyd, D.M.: Composition operators on \(H^{p}(A)\). Pac. J. Math. 62(1), 55–60 (1976)

    Article  Google Scholar 

  12. Cowen, C.C., MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press (1995)

  13. Duren, P.L.: Theory of \(H^p\) spaces. Pure and Applied Mathematics, vol. 38. Academic Press, New York (1970)

    MATH  Google Scholar 

  14. Efendiev, M., Russ, E.: Hardy spaces for the conjugated Beltrami equation in a doubly connected domain. J. Math. Anal. Appl. 383, 439–450 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

  16. Fischer, Y.: Approximation dans des classes de fonctions analytiques généralisées et résolution de problèmes inverses pour les tokamaks. Ph.D. Thesis, Univ. Nice-Sophia Antipolis (2011)

  17. Fischer, Y., Leblond, J., Partington, J.R., Sincich, E.: Bounded extremal problems in Hardy spaces for the conjugate Beltrami equation in simply connected domains. Appl. Comput. Harmon. Anal. 31, 264–285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Forelli, F.: The isometries of \(H^{p}\). Can. J. Math. 16, 721–728 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gallardo-Gutiérrez, E.A., González, M.J., Nicolau, A.: Composition operators on Hardy spaces on Lavrentiev domains. Trans. Am. Math. Soc. 360(1), 395–410 (2008)

    Article  MATH  Google Scholar 

  20. Garnett, J.B.: Bounded Analytic Functions. Graduate Texts in Mathematics, vol. 236. Springer, New York (2007)

  21. Goluzin, G.M.: Geometric Theory of Functions of a Complex Variable. American Mathematical Society, Providence (1969)

  22. Kravchenko, V.V.: Applied Pseudoanalytic Function Theory. Frontiers in Mathematics. Birkhäuser, Switzerland (2009)

    Book  MATH  Google Scholar 

  23. Leblond, J., Pozzi, E., Russ, E.: Composition operators on generalized Hardy spaces (2013). arXiv:1310.4268v1

  24. Lefèvre, P., Li, D., Queffélec, H., Rodríguez-Piazza, L.: Compact composition operators on the Dirichlet space and capacity of sets of contact points. J. Funct. Anal. 264(4), 895–919 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Martin, M.J., Vukotic, M.: Isometries of some classical function spaces among the composition operators. In: Recent Advances in Operator-Related Function Theory. Contemporary Mathematics, vol. 393, pp. 133–138 (2006)

  26. Musaev, K.M.: Some classes of generalized analytic functions. Izv. Acad. Nauk Azerb. S.S.R. 2, 40–46 (1971, in Russian)

  27. Nordgren, E., Rosenthal, P., Wintrobe, F.S.: Invertible composition operators on \(H^p\). J. Funct. Anal. 73(2), 324–344 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rudin, W.: Analytic functions of class \(H_p\). Trans. Am. Math. Soc. 78, 46–66 (1955)

    MathSciNet  MATH  Google Scholar 

  29. Sarason, D.: The \(H^{p}\) spaces of an annulus. Memoirs, vol. 56. AMS, Providence (1965)

  30. Schwartz, H.J.: Composition Operators on \(H^p\). Thesis, University of Toledo, Toledo, Ohio (1969)

  31. Shapiro, J.H.: The essential norm of a composition operator. Ann. Math. 125, 375–404 (1987)

    Article  MATH  Google Scholar 

  32. Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993)

    Book  MATH  Google Scholar 

  33. Shapiro, J.H., Smith, W.: Hardy spaces that support no compact composition operators. J. Funct. Anal. 205(1), 62–89 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vekua, I.N.: Generalized Analytic Functions. Addison-Wesley, Reading (1962)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee for interesting suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Russ.

Additional information

Communicated by Christian Le Merdy.

Appendix: Factorization Results

Appendix: Factorization Results

We extend below [5], Thm 1] to the case of \(n\)-connected Dini smooth domains. Theorem 4 may be seen as a converse to the factorization result [6], Prop. 3.2], see [23] for more details. It is a straightforward generalization of a factorization result on generalized Hardy spaces on simply connected domains; however, the authors could not locate such a factorization for multiply connected Dini-smooth domains in the literature. For that reason, we give a short proof of this extension.

Theorem 4

Let \(\Omega \subset \mathbb {C}\) be a \(n\)-connected Dini smooth domain. Let \(F\in H^p(\Omega ),\) \(\alpha \in L^{\infty }(\Omega ).\) There exists a function \(s\in W^{1,r}(\Omega )\) for all \(r\in (2,+\infty )\) such that \(\hbox {tr Re}\,s=0\) on \(\partial \Omega ,\) \(w=e^sF\) and \(\left\| s\right\| _{W^{1,r}(\Omega )}\lesssim \left\| \alpha \right\| _{L^{\infty }(\Omega )}.\)

The proof is inspired by the one of [5], Thm 1]. By conformal invariance, it is enough to deal with the case where \(\Omega =\mathbb {G}\) is a circular domain. We first assume that \(\alpha \in W^{1,2}(\mathbb {G})\cap L^{\infty }(\mathbb {G})\). For all \(\varphi \in W^{1,2}_{\mathbb {R}}(\mathbb {G})\), let \(G(\varphi )\in W^{1,2}_{0,\mathbb {R}}(\mathbb {G})\) be the unique solution of

$$\begin{aligned} \Delta (G(\varphi ))=\text{ Im } \left( \partial (\alpha e^{-2i\varphi })\right) . \end{aligned}$$

We claim:

Lemma 11

The operator \(G\) is bounded from \(W^{1,2}_{\mathbb {R}}(\mathbb {G})\) from \(W^{2,2}_{\mathbb {R}}(\mathbb {G})\) and compact from \(W^{1,2}_{\mathbb {R}}(\mathbb {G})\) to \(W^{1,2}_{\mathbb {R}}(\mathbb {G})\).

Proof

Let \(\varphi \in W^{1,2}_{\mathbb {R}}(\mathbb {G})\). As in [5], \(\partial (\alpha e^{-2i\varphi })\in L^2(\mathbb {G})\) and \(\left\| \partial (\alpha e^{-2i\varphi })\right\| _{L^2(\mathbb {G})}\lesssim \left\| \varphi \right\| _{W^{1,2}(\mathbb {G})}\). It is therefore enough to show that the operator \(T\), which, to any function \(\psi \in L^2_{\mathbb {R}}(\mathbb {G})\), associates the solution \(h\in W^{1,2}_{0,\mathbb {R}}(\mathbb {G})\) of \(\Delta \psi =h\) is continuous from \(L^2(\mathbb {G})\) to \(W^{2,2}(\mathbb {G})\), which is nothing but the standard \(W^{2,2}\) regularity estimate for second order elliptic equations (see [15], Sec. 6.3,Thm 4] and note that \(\mathbb {G}\) is \(C^2\)). This shows that \(G\) is bounded from \(W^{1,2}_{\mathbb {R}}(\mathbb {G})\) from \(W^{2,2}_{\mathbb {R}}(\mathbb {G})\), and its compactness on \(W^{1,2}_{\mathbb {R}}(\mathbb {G})\) follows then from the Rellich–Kondrachov theorem. \(\square \)

Proof of Theorem 4

As in the proof of [5], Thm 1], Lemma 11 entails that \(G\) has a fixed point in \(W^{1,2}_{\mathbb {R}}(\Omega )\), which yields the conclusion of Theorem 4 when \(\alpha \in W^{1,2}(\Omega )\cap L^{\infty }(\Omega )\), and a limiting procedure ends the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leblond, J., Pozzi, E. & Russ, E. Composition Operators on Generalized Hardy Spaces. Complex Anal. Oper. Theory 9, 1733–1757 (2015). https://doi.org/10.1007/s11785-015-0464-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-015-0464-9

Keywords

Mathematics Subject Classification

Navigation