Skip to main content
Log in

Push-Forward Measures on Configuration Spaces: Integration by Parts and Log-Sobolev Inequality

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We study a class of measures on the space \(\Gamma _{X}\) of locally finite configurations in \(X=\mathbb {R}^{d}\), obtained as images of “lattice” Gibbs measures on \(X^{\mathbb {Z} ^{d}}\) with respect to an embedding \(\mathbb {Z}^{d}\subset \mathbb {R}^{d}\). For these measures, we prove the integration by parts formula and log-Sobolev inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albeverio, S., Kondratiev, Y.G., Rockner, M.: Dirichlet operators via stochastic analysis. J. Funct. Anal. 128(1), 102–138 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Albeverio, S., Kondratiev, Y.G., Röckner, M.: Analysis and geometry on configuration spaces. J. Funct. Anal. 154(2), 444–500 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Albeverio, S., Kondratiev, Y.G., Röckner, M.: Analysis and geometry on configuration spaces: The Gibbsian case. J. Funct. Anal. 157(1), 242–291 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bogachev, L., Daletskii, A.: Poisson cluster measures: quasi-invariance, integration by parts and equilibrium stochastic dynamics. J. Funct. Anal. 256(2), 432–478 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bogachev, L., Daletskii, A.: Gibbs cluster measures on configuration spaces. J. Funct. Anal. 264, 508–550 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bogachev, L., Daletskii, A.: Cluster point processes on manifolds. J. Geom. Phys. 63, 45–79 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berezansky, Y.G., Kondratiev, Y.M.: Spectral methods in infinite-dimensional analysis 1. Springer, Berlin (1995)

  8. Dalecky, Yu.L., Fomin, S.V.: Measures and differential equations in infinite-dimensional space. Springer, Berlin (1991)

  9. Daletskii, A., Ul Haq, A.: Logarithmic Sobolev inequality for a class of measures on configuration spaces. Methods Funct. Anal. Topol. 19(4), 293–300 (2013)

    MATH  MathSciNet  Google Scholar 

  10. Daley, D.J., Vere-Jones, D.: An introduction to the theory of point processes volume I: elementary theory and methods, 2nd edn. Springer, New York (2003)

    Google Scholar 

  11. Deng, C.-S.: Harnack inequality on configuration spaces: the coupling approach and a unified treatment. Stoch. Process. Appl. 124, 220–234 (2014)

    Article  MATH  Google Scholar 

  12. Finkelshtein, D., Kondratiev, Y., Kozitsky, Y., Kutovyi, O.: Stochastic evolution of a continuum particle system with dispersal and competition: micro- and mesoscopic description. Euro Phys J Spec. Topics 216(1), 107–116 (2013)

    Article  Google Scholar 

  13. Finkelshtein, D., Kondratiev, Y.: Regulation mechanisms for a free development economic model. J. Stat. Phys. 136(1), 103–115 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Finkelshtein, D., Kondratiev, Y., Kutovyi, O.: Individual based model with competition in spatial ecology. SIAM J. Math. Anal. 41(1), 297–317 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Georgii, H.-O.: Gibbs Measures and Phase Transitions, De Gruyter Studies in Mathematics, vol. 9. de Gruyter, Berlin (1988)

    Book  Google Scholar 

  16. Guionett, A., Zegarlinsi, B.: Lectures on Logarithmic Sobolev Inequalities. In: Séminaire de Probabilités XXXVI, Lect. Notes Math. 1801, pp. 1–134, Springer, Berlin Heidelberg New York (2003)

  17. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)

    Article  Google Scholar 

  18. Kerstan, J., Matthes, K., Mecke, J.: Infinitely divisible point processes. Wiley (1978)

  19. Ma, Z.M., Röckner, M.: Construction of diffusions on configuration spaces. Osaka J. Math 37(2), 273–314 (2000)

    MATH  MathSciNet  Google Scholar 

  20. Surgailis, D.: On the multiple Poisson stochastic integrals and associated Markov semigroups. Probabl. Math. Stat. 3, 217–239 (1984)

    MathSciNet  Google Scholar 

  21. Wu, L.: A new modified logarithmic Sobolev inequality for Poisson point processes and several applications. Probabl. Theory Relat. Fields 118, 427–438 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like thank Z. Brzezniak, Yu. Kondratiev and E. Lytvynov for their interest to this work and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Daletskii.

Additional information

Communicated by Yuri Kondratiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daletskii, A., Ul Haq, A. Push-Forward Measures on Configuration Spaces: Integration by Parts and Log-Sobolev Inequality. Complex Anal. Oper. Theory 9, 1533–1555 (2015). https://doi.org/10.1007/s11785-014-0406-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-014-0406-y

Keywords

Mathematics Subject Classification (2010)

Navigation