Skip to main content
Log in

The Weighted Super-Bergman Kernels of \(\mathbb {B}^{m|n}\) and Integral Representations of the Invariant Inner Products on \(H^2_{\nu }(\mathbb {B}^m)\)

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

The purpose of this paper is twofold. Firstly, we give explicit expressions of the super-Szeg\(\ddot{o}\) kernel and the weighted super-Bergman kernel for the super-ball \(\mathbb {B}^{m|n}\). Secondly, using orthogonal decompositions of the weighted super-Bergman spaces \(L_{a}^2(\mathbb {B}^{m|n},\mu ^{\nu }_{m|n})\), we obtain new integral representations for the invariant inner products on \( H^2_{\nu }(\mathbb {B}^m)\) of holomorphic functions on the unit ball \(\mathbb {B}^m\) of \(\mathbb {C}^m\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arazy, J., Upmeier, H.: Invariant inner product in spaces of holomorphic functions on bounded symmetric domains. Documenta Math. 2, 213–261 (1997)

    MATH  MathSciNet  Google Scholar 

  2. Arazy, J., Upmeier, H.: Boundary measures for symmetric domains and integral formulas for the discrete wallach points. Integr. Equ. Oper. Theory 47, 375–434 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berezin, F.A.: Introduction to superanalysis, with a foreword by A. A. Kirillov and an appendix by V. I. Ogievetsky. Mathematical Physics and Applied Mathematics, vol. 9. D. Reidel Publishing Co., Dordrecht (1987)

  4. Berezin, F.A., Leites, D.A.: Supermanifolds. Dokl. Akad. Nauk SSSR 224, 505–508 (1975)

    MathSciNet  Google Scholar 

  5. Borthwick, D., Klimek, S., Lesniewski, A., Rinaldi, M.: Super Toeplitz operators and non-perturbative deformation quantization of supermanifolds. Commun. Math. Phys. 153, 49–76 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borthwick, D., Klimek, S., Lesniewski, A., Rinaldi, M.: Matrix Cartan superdomains, and quantization. J. Funct. Anal. 127, 456–510 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Coulembier, K.: The orthosymplectic supergroup in harmonic analysis. J. Lie Theory 23, 55–83 (2013)

    MATH  MathSciNet  Google Scholar 

  8. Coulembier, K., De Bie, H., Sommen, F.: Integration in superspace using distribution theory. J. Phys. A Math. Theor. 42, 395206 (2009). (23 pp)

    Article  Google Scholar 

  9. Coulembier, K., De Bie, H., Sommen, F.: Orthosymplectically invariant functions in superspace. J. Math. Phys. 51, 083504 (2010). (23 pp)

    Article  MathSciNet  Google Scholar 

  10. DeWitt, B.: Supermanifolds. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  11. Hernandez Ruiperez, D., Munoz Masque, J.: Global variational calculus on graded manifolds, I. Graded jet bundles, structure 1-form and graded infinitesimal contact transformations. J. Math. Pures et Appl. 63, 283–309 (1984)

    MATH  MathSciNet  Google Scholar 

  12. Jadczyk, A., Pilch, K.: Superspaces and supersymmetries. Commun. Math. Phys. 78, 373–390 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kostant, B.: Graded Manifolds, graded Lie theory, and prequantization. In: Bleuler, K., Reetz, A. (eds.) Differential Geometric Methods in Mathematical Physics. Lecture Notes in Mathematics 570. Springer, Berlin, pp. 177–306 (1977)

  14. Kostant, B., Sternberg, S.: Symplectic reduction, BRS cohomology, and infinite dimensional Clifford algebras. Ann. Phys. 176, 49–113 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Loaiza, M., Upmeier, H.: Toeplitz \(C^{*}\)-algebras on super-cartan domains. Rev. Mat. Complut. 21(2), 489–518 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rogers, A.: A global theory of supermanifolds. J. Math. Phys. 21(6), 1352–1365 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rogers, A.: Supermanifolds: theory and applications. World Scientific Publishing, Singapore (2007)

    Book  Google Scholar 

  18. Manin, Y.: Gauge Field Theory and Complex Geometry. Springer, Berlin (1988)

    MATH  Google Scholar 

  19. Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, vol. 226. Springer, New York (2005)

    Google Scholar 

Download references

Acknowledgments

The part of the work was completed when the first author visited School of Mathematics and Statistics at Wuhan University during 2013, and he wishes to thank the School for its kind hospitality. In addition, the authors would like to thank the referees for many helpful suggestions. The first author was supported by the Scientific Research Fund of Sichuan Provincial Education Department (No.11ZA156), and the second author was supported by the National Natural Science Foundation of China (No.11271291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhan Tu.

Additional information

Communicated by Frank Sommen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Tu, Z. The Weighted Super-Bergman Kernels of \(\mathbb {B}^{m|n}\) and Integral Representations of the Invariant Inner Products on \(H^2_{\nu }(\mathbb {B}^m)\) . Complex Anal. Oper. Theory 9, 1037–1063 (2015). https://doi.org/10.1007/s11785-014-0392-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-014-0392-0

Keywords

Mathematics Subject Classification (2010)

Navigation