Skip to main content
Log in

A Hilbert Transform for Matrix Functions on Fractal Domains

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We consider Hölder continuous circulant (2 × 2) matrix functions \({{\bf G}^1_2}\) defined on the fractal boundary Γ of a Jordan domain Ω in \({\mathbb{R}^{2n}}\). The main goal is to establish a Hilbert transform for such functions, within the framework of Hermitian Clifford analysis. This is a higher dimensional function theory centered around the simultaneous null solutions of two first order vector valued differential operators, called Hermitian Dirac operators. In Brackx et al. (Bull Braz Math Soc 40(3): 395–416, 2009) a Hermitian Cauchy integral was constructed by means of a matrix approach using circulant (2 × 2) matrix functions, from which a Hilbert transform was derived in Brackx et al. (J Math Anal Appl 344: 1068–1078, 2008) for the case of domains with smooth boundary. However, crucial parts of the method are not extendable to the case where the boundary of the considered domain is fractal. At present we propose an alternative approach which will enable us to define a new Hermitian Hilbert transform in that case. As a consequence, we give necessary and sufficient conditions for the Hermitian monogenicity of a circulant matrix function \({{\bf G}^1_2}\) in the interior and exterior of Ω, in terms of its boundary value \({{\bf g}^1_2={\bf G}^1_2|_\Gamma}\), extending in this way also results of Abreu Blaya et al. (Bound. Value Probl. 2008: 2008) (article ID 425256), (article ID 385874), where Γ is required to be Ahlfors–David regular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abreu Blaya R., Bory Reyes J., Brackx F., De Schepper H., Sommen F.: A Hermitian Cauchy formula on a domain with fractal boundary. J. Math. Anal. Appl. 369(1), 273–282 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abreu Blaya, R., et al.: Hermitian Cauchy integral decomposition of continuous functions on hypersurfaces. Bound. Value Probl. 2008 (2008) (article ID 425256)

  3. Abreu Blaya, R., Bory Reyes, J., Brackx, F., De Schepper, H.: Hermitian Téodorescu transform decomposition of continuous matrix functions on fractal hypersurfaces. Bound. Value Probl. 2010 (2010) (article ID 791358)

  4. Abreu Blaya, R., Bory Reyes, J., Peña Peña, D., Sommen, F.: A boundary value problem for Hermitian monogenic functions. Bound. Value Probl. 2008 (2008) (article ID 385874)

  5. Abreu Blaya R., Bory Reyes J., Moreno García T.: Hermitian decomposition of continuous functions on a fractal surface. Bull. Braz. Math. Soc. 40(1), 107–115 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brackx F. et al.: Fundaments of Hermitian Clifford analysis—Part I: Complex structure. Complex Anal. Oper. Theory 1(3), 341–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brackx F. et al.: Fundaments of Hermitian Clifford analysis—Part II: Splitting of h-monogenic equations. Complex Var. Elliptic Equ. 52(10–11), 1063–1079 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brackx F., De Knock B., De Schepper H.: A matrix Hilbert transform in Hermitian Clifford analysis. J. Math. Anal. Appl. 344, 1068–1078 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brackx F., De Knock B., De Schepper H., Eelbode D.: On the interplay between the Hilbert transform and conjugate harmonic functions. Math. Meth. Appl. Sci. 29(12), 1435–1450 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brackx F., De Knock B., De Schepper H., Sommen F.: On Cauchy and Martinelli–Bochner integral formulae in Hermitian Clifford analysis. Bull. Braz. Math. Soc. 40(3), 395–416 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. In: Research Notes in Mathematics, vol. 76. Pitman (Advanced Publishing Program), Boston (1982)

  12. Brackx F., De Schepper H., Eelbode D., Souček V.: The Howe dual pair in Hermitian Clifford analysis. Rev. Math. IberoAmericana 26(2), 449–479 (2010)

    Article  MATH  Google Scholar 

  13. Brackx, F., De Schepper, H., Luna Elizarrarás, M.E., Shapiro, M.: Integral representation formulae in Hermitian Clifford analysis. In: Gürlebeck, K., Könke, C. (eds.) Proceedings of the 18th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, Weimar, Germany (2009) [digital]

  14. Brackx F., De Schepper H., Sommen F.: A theoretical framework for wavelet analysis in a Hermitian Clifford setting. Comm. Pure Appl. Anal. 6(3), 549–567 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brackx F., De Schepper H., Sommen F.: The Hermitian Clifford analysis toolbox. Adv. Appl. Cliff. Alg. 18(3–4), 451–487 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Colombo F., Sabadini I., Sommen F., Struppa D.C.: Analysis of Dirac Systems and Computational Algebra. Birkhäuser, Boston (2004)

    Book  MATH  Google Scholar 

  17. Delanghe R.: On some properties of the Hilbert transform in Euclidean space. Bull. Belg. Math. Soc.—Simon Stevin 11, 163–180 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Delanghe R., Sommen F., Souček V.: Clifford Algebra and Spinor-Valued Functions. Kluwer, Dordrecht (1992)

    Book  MATH  Google Scholar 

  19. Eelbode D.: Stirling numbers and spin-Euler polynomials. Exp. Math. 16(1), 55–66 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Falconer, K.J.: The geometry of fractal sets. In: Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge (1986)

  21. Feder J.: Fractals (With a foreword by Benoit B. Mandelbrot) Physics of Solids and Liquids. Plenum Press, New York (1988)

    Google Scholar 

  22. Federer H.: Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York Inc. (1969)

    Google Scholar 

  23. Gürlebeck K., Habetha K., Sprössig W.: Holomorphic Functions in the Plane and n-Dimensional Space. Birkhäuser Verlag, Basel (2007)

    Google Scholar 

  24. Gürlebeck K., Sprössig W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, Chichester (1998)

    Google Scholar 

  25. Gilbert J., Murray M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  26. Harrison J., Norton A.: The Gauss–Green theorem for fractal boundaries. Duke Math. J. 67(3), 575–588 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Horváth J.: Sur les fonctions conjuguées à plusieurs variables (French). Kon. Ned. Akad. Wet., Proceedings Series A 56 = Indagationes Mathematicae 15, 17–29 (1953)

    Google Scholar 

  28. Lapidus M.L., Maier H.: Hypothèse de Riemann, cordes fractales vibrantes et conjecture de Weyl-Berry modifiée (French). C.R. Acad. Sci. Paris Ser. I Math. 313(1), 19–24 (1991)

    MathSciNet  MATH  Google Scholar 

  29. Rocha-Chávez, R., Shapiro, M., Sommen, F.: Integral theorems for functions and differential forms in Cm. In: Research Notes in Mathematics, vol. 428, Chapman & Hall, Boca Raton (2002)

  30. Ryan, J.: Complexified Clifford analysis. Comp. Var. Theory Appl. 1(1), 119–149 (1982/1983)

  31. Sabadini I., Sommen F.: Hermitian Clifford analysis and resolutions. Math. Methods Appl. Sci. 25(16–18), 1395–1413 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton (1970)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. De Schepper.

Additional information

Communicated by Daniel Aron Alpay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abreu-Blaya, R., Bory-Reyes, J., Brackx, F. et al. A Hilbert Transform for Matrix Functions on Fractal Domains. Complex Anal. Oper. Theory 6, 359–372 (2012). https://doi.org/10.1007/s11785-010-0121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-010-0121-2

Keywords

Mathematics Subject Classification (2000)

Navigation