Skip to main content
Log in

A steepest-descent Krasnosel’skii–Mann algorithm for a class of variational inequalities in Banach spaces

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, in order to solve a variational inequality problem over the fixed point set of a nonexpansive mapping on uniformly smooth or reflexive and strictly convex Banach spaces with a uniformly Gâteaux differentiable norm, we investigate an explicit iteration method, based on the steepest-descent and Krasnosel’skii–Mann algorithms. We also show that some modifications of the last and Halpern-type algorithms are special cases of our result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal R. P., O’Regan D., Sahu D. R.: Fixed Point Theory for Lipschitzian-Type Mappings with Applications. Springer, New York (2009)

    MATH  Google Scholar 

  2. Browder E. F., Petryshin W. V.: Constructions of fixed points of nonlinear mappings. J. Math. Anal. Appl. 20, 197–228 (1967)

    Article  MathSciNet  Google Scholar 

  3. Buong Ng., Duong L. Th.: An explicit iterative algorithm for a class of variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 151, 513–524 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byrne C.: A unified treatment of some iterative algorithm in signal processing and image reconstruction. Inverse Problems 20, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ceng L. C., Ansari Q. H., Yao J. Ch.: Mann-type steepest-descent and modified hybrid steepest descent methods for variational inequalities in Banach spaces. Numer. Funct. Anal. Optim. 29, 987–1033 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cioranescu I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer Acad. Publ., Dordrecht (1990)

    Book  MATH  Google Scholar 

  7. Goebel K., Reich S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  8. Halpern B.: Fixed points of nonexpanding maps. Bull. Amer. Math. Soc. 73, 957–961 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Iiduka I.: Fixed point optimization algorithm and its application to power control in CDMA data networks. Math. Program. 133, 227–242 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iiduka I.: An ergodic algorithm for the power-control games for CDMA data networks. J. Math. Model. Algorithms 8, 1–18 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iiduka I.: Fixed point optimization algorithm and its application to network bandwidth allocation. J. Comput. Appl. Math. 236, 1733–1742 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iiduka I.: Iterative algorithm for triple-hierarchical constrained nonconvex optimization problem and its application to network bandwidth allocation. SIAM J. Optim. 22, 862–878 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iiduka I.: Fixed point optimization algorithms for distributed optimization in network systems. SIAM J. Optim. 23, 1–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ishikawa S.: Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44, 147–150 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. V. Kantorovich and G. P. Akilov, Functional Analysis. 2nd ed., Nauka, Moscow, 1977 (in Russian).

  16. Kim T. H., Xu H. K.: Strong convergence of modified Mann iterations. Nonlinear Anal. 61, 51–60 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krasnosel’skiĭ M. A.: Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 10, 123–127 (1955)

    MathSciNet  Google Scholar 

  18. Mann W.R.: Mean value methods in iteration. Proc. Amer. Math. Soc. 4, 506–510 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moudafi A.: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241, 46–55 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Reich S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Reich S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Reich S.: Review of: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, by Ioana Cioranescu [6]. Bull. Amer. Math. Soc. 26, 367–370 (1992)

    Article  MathSciNet  Google Scholar 

  23. Shehu Y.: Modified Krasnoselskii-Mann iterative algorithm for nonexpansive mappings in Banach spaces. Arab J. Math. (Springer) 2, 209–219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Suzuki T.: Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces. Fixed Point Theory Appl. 2005, 103–123 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Suzuki T.: A sufficient and necessary condition for Halpern-type strong convergence to fixed points of nonexpansive mappings. Proc. Amer. Math. Soc. 135, 99–106 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Takahashi W., Ueda Y.: On Reich’s strong convergence theorems for resolvents of accretive operators. J. Math. Anal. Appl. 104, 546–553 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vainberg M.M.: Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations. Wiley, New York (1973)

    MATH  Google Scholar 

  28. Xu H.-K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. (2) 66, 240–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu Z., Roach G.F.: A necessary and sufficient condition for convergence of steepest descent approximation to accretive operator equations. J. Math. Anal. Appl. 167, 340–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. I. Yamada, The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In: Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (D. Butnariu, Y. Censor and S. Reich, eds.), North–Holland, Amsterdam, 2001, 473–504.

  31. Yao Y., Zhou H., Liou Y.-Ch.: Strong convergence of a modified Krasnoselski-Mann iterative algorithm for non-expansive mappings. J. Appl. Math. Comput. 29, 383–389 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou H.: A characteristic condition for convergence of steepest descent approximation to accretive operator equations. J. Math. Anal. Appl. 271, 1–6 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou H., Wang P.: A simpler explicit iterative algorithm for a class of variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 161, 716–727 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Thu Thuy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buong, N., Quynh, V.X. & Thuy, N.T.T. A steepest-descent Krasnosel’skii–Mann algorithm for a class of variational inequalities in Banach spaces. J. Fixed Point Theory Appl. 18, 519–532 (2016). https://doi.org/10.1007/s11784-016-0290-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0290-3

Mathematics Subject Classification

Keywords

Navigation