Skip to main content
Log in

Least energy solutions for nonlinear Schrödinger equations involving the half Laplacian and critical growth

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study a class of nonlinear Schrödinger equations involving the half Laplacian and critical growth. We assume that the potential of the nonlinear Schrödinger equation includes a parameter \({\lambda}\). Moreover, the potential behaves like a potential well when the parameter \({\lambda}\) is large. Using variational methods, combining Nehari methods, we prove that the equation has a least energy solution which, for \({\lambda}\) large, localizes near the bottom of the potential well. Moreover, if the zero set int \({V^{-1}(0)}\) of \({V(x)}\) includes more than one isolated component, then \({u_{\lambda}(x)}\) will be trapped around all the isolated components. However, in Laplacian case when \({s = 1}\), for \({\lambda}\) large, the corresponding least energy solution will be trapped around only one isolated component and will become arbitrary small in other components of int \({V^{-1}(0)}\). This is the essential difference with the Laplacian problems since the operator \({(- \Delta)^{1/2}}\) is nonlocal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A., Badiale M., Cingolani S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Applebaum D.: Lévy processes—from probability to finance and quantum groups. Notices Amer. Math. Soc. 51, 1336–1347 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Barrios B., Colorado E., de Pablo A., Sánchez U.: On some critical problems for the fractional Laplacian operator. J. Differential Equations 252, 6133–6162 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartsch T., Pankov A., Wang Z. Q.: Nonlinear Schrödinger equations with steep pontential well. Commun. Contemp. Math. 3, 549–569 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartsch T., Wang Z.: Multiple positive solutions for a nonlinear Schrödinger equation. Z. Angew. Math. Phys. 51, 366–384 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benci V., Cerami G.: Existence of positive solutions of the equation \({-\Delta u+ a(x)u=u^{\frac{N+2}{N-2}}}\) in \({{\mathbb{R}}^N}\). J. Funct. Anal. 88, 90–117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bona J. L., Li Y. A.: Decay and analyticity of solitary waves. J. Math. Pures Appl. (9) 76, 377–430 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Bouard A., Saut J.C.: Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves. SIAM J. Math. Anal. 28, 1064–1085 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brézis H., Lieb E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cabré X., Tan J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caffarelli L., Silvestre L.: An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng M.: Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 53, 043507 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Choi W., Kim S., Lee K.: Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian. J. Funct. Anal. 266, 6531–6598 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dipierro S., Palatucci G., Valdinoci E.: Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche (Catania) 68, 201–216 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Escobar J.: Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37, 687–698 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Felmer P., Quaas A., Tan J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 142, 1237–1262 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frank R.L., Lenzmann E.: Uniqueness of non-linear ground states for fractional Laplacians in \({{\mathbb{R}}}\). Acta Math. 210, 261–318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lions P.-L.: The concentration-compactness principle in the calculus of variations. The limit case II. Rev. Mat. Iberoam. 1, 45–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Maris M.: On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation. Nonlinear Anal. 51, 1073–1085 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Reed M., Simon B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  21. Tan J.: The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differential Equations 42, 21–41 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tan J.: Positive solutions for non local elliptic problems. Discrete Contin. Dyn. Syst. 33, 837–859 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tang Z.: Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Commun. Pure Appl. Anal. 13, 237–248 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weinstein M.: Solitary waves of nonlinear dispersive evolution equations with critical power nonlinearities. J. Differential Equations 69, 192–203 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Willem, Minimax Theorems. Progr. Nonlinear Differential Equations and their Applications 24, Birkhäuser Boston, Boston, MA, 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwei Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, M., Tang, Z. Least energy solutions for nonlinear Schrödinger equations involving the half Laplacian and critical growth. J. Fixed Point Theory Appl. 18, 367–395 (2016). https://doi.org/10.1007/s11784-016-0286-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0286-z

Mathematics Subject Classification

Keywords

Navigation