Skip to main content
Log in

Global continuation of forced oscillations of retarded motion equations on manifolds

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We investigate T-periodic parametrized retarded functional motion equations on (possibly) noncompact manifolds; that is, constrained second order retarded functional differential equations. For such equations we prove a global continuation result for T-periodic solutions. The approach is topological and is based on the degree theory for tangent vector fields as well as on the fixed point index theory.

Our main theorem is a generalization to the case of retarded equations of an analogous result obtained by the last two authors for second order differential equations on manifolds. As corollaries we derive a Rabinowitz-type global bifurcation result and a Mawhin-type continuation principle. Finally, we deduce the existence of forced oscillations for the retarded spherical pendulum under general assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benevieri P., Calamai A., Furi M., Pera M. P.: On the existence of forced oscillations for the spherical pendulum acted on by a retarded periodic force. J. Dynam. Differential Equations 23, 541–549 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benevieri P., Calamai A., Furi M., Pera M. P.: On general properties of retarded functional differential equations on manifolds. Discrete Contin. Dyn. Syst. 33, 27–46 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benevieri P., Calamai A., Furi M., Pera M. P.: Global continuation of periodic solutions for retarded functional differential equations on manifolds. Bound. Value Probl. 21, 1–19 (2013)

    MathSciNet  Google Scholar 

  4. Benevieri P., Furi M., Pera M. P., Calamai A.: A continuation result for forced oscillations of constrained motion problems with infinite delay. Adv. Nonlinear Stud. 13, 263–278 (2013)

    MATH  MathSciNet  Google Scholar 

  5. K. Borsuk, Theory of Retracts. Polish Sci. Publ., Warsaw, 1967.

  6. R. F. Brown, The Lefschetz Fixed Point Theorem. Scott, Foresman and Co., Glenview, Ill., London, 1971.

  7. A. Dold, Lectures on Algebraic Topology. Springer-Verlag, Berlin, 1972.

  8. N. Dunford and J. T. Schwartz, Linear Operators. Wiley & Sons, Inc., New York, 1957.

  9. Furi M., Pera M. P.: A continuation principle for forced oscillations on differentiable manifolds. Pacific J. Math. 121, 321–338 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Furi M., Pera M. P.: A continuation principle for periodic solutions of forced motion equations on manifolds and applications to bifurcation theory. Pacific J. Math. 160, 219–244 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Furi M., Pera M. P., Spadini M.: Periodic solutions of retarded functional perturbations of autonomous differential equations on manifolds. Commun. Appl. Anal. 15, 381–394 (2011)

    MATH  MathSciNet  Google Scholar 

  12. R. Gaines and J.Mawhin, Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Math. 568, Springer-Verlag, Berlin, 1977.

  13. Granas A.: The Leray-Schauder index and the fixed point theory for arbitrary ANRs. Bull. Soc. Math. France 100, 209–228 (1972)

    MATH  MathSciNet  Google Scholar 

  14. A. Granas and J. Dugundji, Fixed Point Theory. Springer-Verlag, New York, 2003.

  15. V. Guillemin and A. Pollack, Differential Topology. Prentice-Hall, Englewood Cliffs, NJ, 1974.

  16. Hale J. K., Kato J.: Phase space for retarded equations with infinite delay. Funkc. Ekvac. 21, 11–41 (1978)

    MATH  MathSciNet  Google Scholar 

  17. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations. Springer-Verlag, New York, 1993.

  18. Y. Hino, S. Murakami and T. Naito, Functional-Differential Equations with Infinite Delay. Lecture Notes in Math. 1473, Springer-Verlag, Berlin, 1991.

  19. M. W. Hirsch, Differential Topology. Graduate Texts in Math. 33, Springer-Verlag, Berlin, 1976.

  20. J. Leray and J. Schauder, Topologie et équations fonctionnelles. Ann. Sci. École Norm. Sup. (3) 51 (1934), 45–78.

  21. Mallet-Paret J., Nussbaum R. D., Paraskevopoulos P.: Periodic solutions for functional-differential equations with multiple state-dependent time lags. Topol. Methods Nonlinear Anal. 3, 101–162 (1994)

    MATH  MathSciNet  Google Scholar 

  22. J. Mawhin, Équations intégrales et solutions périodiques des systèmes différentiels non linéaires. Acad. Roy. Belg. Bull. Cl. Sci. (5) 55 (1969), 934–947.

  23. Mawhin J.: Periodic solutions of nonlinear functional differential equations. J. Differential Equations 10, 240–261 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  24. J. M. Milnor, Topology from the Differentiable Viewpoint. The University Press of Virginia, Charlottesville, 1965.

  25. Nussbaum R. D.: The fixed point index for local condensing maps. Ann. Mat. Pura Appl. (4) 89, 217–258 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  26. R. D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations. Ann. Mat. Pura Appl. (4) 101 (1974), 263–306.

  27. R. D. Nussbaum, The fixed point index and fixed point theorems. In: Topological Methods for Ordinary Differential Equations (Montecatini Terme, 1991), Lecture Notes in Math. 1537, Springer-Verlag, Berlin, 1993, 143–205.

  28. Oliva W. M.: Functional differential equations on compact manifolds and an approximation theorem. J. Differential Equations 5, 483–496 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  29. W. M. Oliva, Functional differential equations—generic theory. In: Dynamical Systems (Proc. Internat. Sympos., Brown Univ., Providence, RI, 1974), Vol. I, Academic Press, New York, 1976, 195–209.

  30. Oliva W. M., Rocha C.: Reducible Volterra and Levin–Nohel retarded equations with infinite delay. J. Dynam. Differential Equations 22, 509–532 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rabinowitz P. H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  32. E. Spanier, Algebraic Topology. McGraw-Hill, New York, 1966.

  33. Tromba A. J.: The Euler characteristic of vector fields on Banach manifolds and a globalization of Leray-Schauder degree. Adv. Math. 28, 148–173 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Benevieri.

Additional information

To the outstanding mathematician Andrzej Granas whose contribution to the fixed point index theory made the existence of this article possible

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benevieri, P., Calamai, A., Furi, M. et al. Global continuation of forced oscillations of retarded motion equations on manifolds. J. Fixed Point Theory Appl. 16, 273–300 (2014). https://doi.org/10.1007/s11784-015-0215-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-015-0215-6

Mathematics Subject Classification

Keywords

Navigation