Skip to main content
Log in

Nitrifying population dynamics in a redox stratified membrane biofilm reactor (RSMBR) for treating ammonium-rich wastewater

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

Nitrogen removal performance and nitrifying population dynamics were investigated in a redox stratified membrane biofilm reactor (RSMBR) under oxygen limited condition to treat ammonium-rich wastewater. When the NHt +4 -N loading rate increased from 11.1±1.0 to 37:2 ± 3:2 gNHt +4 -N·m−2·d−1, the nitrogen removal in the RSMBR system increased from 18.0±9.6 mgN·d−1 to 128.9±61.7 mgN·d−1. Shortcut nitrogen removal was achieved with nitrite accumulation of about 22:3 ± 5:3 mgNO 2 -N·L−1. Confocal micrographs showed the stratified distributions of nitrifiers and denitrifiers in the membrane aerated biofilms (MABs) at day 120, i.e., ammonia and nitrite oxidizing bacteria (AOB and NOB) were dominant in the region adjacent to the membrane, while heterotrophic bacteria propagated at the top of the biofilm. Real-time qPCR results showed that the abundance of amoA gene was two orders of magnitude higher than the abundance of nxrA gene in the MABs. However, the nxrA gene was always detected during the operation time, which indicates the difficulty of complete washout of NOB in MABs. The growth of heterotrophic bacteria compromised the dominance of nitrifiers in biofilm communities, but it enhanced the denitrification performance of the RSMBR system. Applying a high ammonia loading together with oxygen limitation was found to be an effective way to start nitrite accumulation in MABs, but other approaches were needed to sustain or improve the extent of nitritation in nitrogen conversion in MABs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith V H, Tilman G D, Nekola J C. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 1999, 100(1–3): 179–196

    Article  CAS  Google Scholar 

  2. Hellinga C, Schellen A A J C, Mulder J W, van Loosdrecht M C M, Heijnen J J. The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water. Water Science and Technology, 1998, 37(9): 135–142

    Article  CAS  Google Scholar 

  3. Ahn Y H. Sustainable nitrogen elimination biotechnologies: a review. Process Biochemistry, 2006, 41(8): 1709–1721

    Article  CAS  Google Scholar 

  4. Peng Y Z, Zhu G B. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Applied Microbiology and Biotechnology, 2006, 73(1): 15–26

    Article  CAS  Google Scholar 

  5. Sinha B, Annachhatre A P. Partial nitrification—operational parameters and microorganisms involved. Reviews in Environmental Science and Biotechnology, 2007, 6(4): 1569–1705

    Google Scholar 

  6. Guo J, Wang S, Huang H, Peng Y, Ge S, Wu C, Sun Z. Efficient and integrated start-up strategy for partial nitrification to nitrite treating low C/N domestic wastewater. Water Science and Technology, 2009, 60(12): 3243–3251

    CAS  Google Scholar 

  7. Jubany I, Lafuente J, Baeza J A, Carrera J. Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on Oxygen Uptake Rate measurements. Water Research, 2009, 43(11): 2761–2772

    Article  CAS  Google Scholar 

  8. Jenicek P, Svehla P, Zabranska J, Dohanyos M. Factors affecting nitrogen removal by nitritation/denitritation. Water Science and Technology, 2004, 49(5–6): 73–79

    CAS  Google Scholar 

  9. Aslan S, Miller L, Dahab M. Ammonium oxidation via nitrite accumulation under limited oxygen concentration in sequencing batch reactors. Bioresource Technology, 2009, 100(2): 659–664

    Article  CAS  Google Scholar 

  10. Anthonisen A C, Loehr R C, Prakasam T B, Srinath E G. Inhibition of nitrification by ammonia and nitrous acid. Journal — Water Pollution Control Federation, 1976, 48(5): 835–852

    CAS  Google Scholar 

  11. Kim D J, Lee D I, Keller J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresource Technology, 2006, 97(3): 459–468

    Article  CAS  Google Scholar 

  12. Van Hulle S W H, Volcke E I P, Teruel J L, Donckels B, van Loosdrecht M C M, Vanrolleghem P A. Influence of temperature and pH on the kinetics of the Sharon nitritation process. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2007, 82(5): 471–480

    Article  Google Scholar 

  13. van Kempen R, ten Have C C R, Meijer S C F, Mulder J W, Duin J O J, Uijterlinde C A, van Loosdrecht M C M. SHARON process evaluated for improved wastewater treatment plant nitrogen effluent quality. Water Science and Technology, 2005, 52(4): 55–62

    Google Scholar 

  14. Gali A, Dosta J, van Loosdrecht M C M, Mata-Alvarez J. Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process. Process Biochemistry, 2007, 42(4): 715–720

    Article  CAS  Google Scholar 

  15. Pochana K, Keller J. Study of factors affecting simultaneous nitrification and denitrification. Water Science and Technology, 1999, 39(6): 61–68

    Article  CAS  Google Scholar 

  16. Ciudad G, González R, Bornhardt C, Antileo C. Modes of operation and pH control as enhancement factors for partial nitrification with oxygen transport limitation. Water Research, 2007, 41(20): 4621–4629

    Article  CAS  Google Scholar 

  17. Brindle K, Stephenson T, Semmens M J. Nitrification and oxygen utilisation in a membrane aeration bioreactor. Journal of Membrane Science, 1998, 144(1–2): 197–209

    Article  CAS  Google Scholar 

  18. Suzuki Y, Hatano N, Ito S, Ikeda H. Performance of nitrogen removal and biofilm structure of porous gas permeable membrane reactor. Water Science and Technology, 2000, 41(4–5): 211–217

    CAS  Google Scholar 

  19. Hsieh Y L, Tseng S K, Chang Y J. Nitrification using polyvinyl alcohol-immobilized nitrifying biofilm on an O2-enriching membrane. Biotechnology Letters, 2002, 24(4): 315–319

    Article  CAS  Google Scholar 

  20. Semmens M J, Dahm K, Shanahan J, Christianson A. COD and nitrogen removal by biofilms growing on gas permeable membranes. Water Research, 2003, 37(18): 4343–4350

    Article  CAS  Google Scholar 

  21. Terada A, Hibiya K, Nagai J, Tsuneda S, Hirata A. Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment. Journal of Bioscience and Bioengineering, 2003, 95(2): 170–178

    CAS  Google Scholar 

  22. Satoh H, Ono H, Rulin B, Kamo J, Okabe S, Fukushi K. Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated biofilm reactors. Water Research, 2004, 38(6): 1633–1641

    Article  CAS  Google Scholar 

  23. Walter B, Haase C, Räbiger N. Combined nitrification/denitrification in a membrane reactor. Water Research, 2005, 39(13): 2781–2788

    Article  CAS  Google Scholar 

  24. Terada A, Yamamoto T, Igarashi R, Tsuneda S, Hirata A. S. T and Hirata A. Feasibility of a membrane-aerated biofilm reactor to achieve controllable nitrification. Biochemical Engineering Journal, 2006, 28(2): 123–130

    Article  CAS  Google Scholar 

  25. Downing L S, Nerenberg R. Performance and microbial ecology of the hybrid membrane biofilm process for concurrent nitrification and denitrification of wastewater. Water Science and Technology, 2007, 55(8–9): 355–362

    Article  CAS  Google Scholar 

  26. Syron E, Casey E. Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. Environmental Science & Technology, 2008, 42(6): 1833–1844

    Article  CAS  Google Scholar 

  27. Hwang J H, Cicek N, Oleszkiewicz J A. Membrane biofilm reactors for nitrogen removal: state-of-the-art and research needs. Water Science and Technology, 2009, 60(11): 2739–2747

    Article  CAS  Google Scholar 

  28. Wang R, Terada A, Lackner S, Smets B F, Henze M, Xia S, Zhao J. Nitritation performance and biofilm development of co- and counter-diffusion biofilm reactors: modeling and experimental comparison. Water Research, 2009, 43(10): 2699–2709

    Article  CAS  Google Scholar 

  29. Terada A, Lackner S, Tsuneda S, Smets B F. Redox-stratification controlled biofilm (ReSCoBi) for completely autotrophic nitrogen removal: the effect of co- versus counter-diffusion on reactor performance. Biotechnology and Bioengineering, 2007, 97(1): 40–51

    Article  CAS  Google Scholar 

  30. Gong Z, Liu S, Yang F, Bao H, Furukawa K. Characterization of functional microbial community in a membrane-aerated biofilm reactor operated for completely autotrophic nitrogen removal. Bioresource Technology, 2008, 99(8): 2749–2756

    Article  CAS  Google Scholar 

  31. LaPara TM, Cole A C, Shanahan JW, Semmens MJ. The effects of organic carbon, ammoniacal-nitrogen, and oxygen partial pressure on the stratification of membrane-aerated biofilms. Journal of Industrial Microbiology & Biotechnology, 2006, 33(4): 315–323

    Article  CAS  Google Scholar 

  32. Feng Y J, Tseng S K, Hsia T H, Ho C M, Chou W P. Partial nitrification of ammonium-rich wastewater as pretreatment for anaerobic ammonium oxidation (Anammox) using membrane aeration bioreactor. Journal of Bioscience and Bioengineering, 2007, 104(3): 182–187

    Article  CAS  Google Scholar 

  33. Hwang J H, Cicek N, Oleszkiewicz J A. Achieving biofilm control in a membrane biofilm reactor removing total nitrogen. Water Research, 2010, 44(7): 2283–2291

    Article  CAS  Google Scholar 

  34. Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 1995, 59(1): 143–169

    CAS  Google Scholar 

  35. Geets J, de Cooman M, Wittebolle L, Heylen K, Vanparys B, De Vos P, Verstraete W, Boon N. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Applied Microbiology and Biotechnology, 2007, 75(1): 211–221

    Article  CAS  Google Scholar 

  36. Rotthauwe J H, Witzel K P, Liesack W. The ammonia mono-oxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997, 63(12): 4704–4712

    CAS  Google Scholar 

  37. Wertz S, Poly F, Le Roux X, Degrange V. Development and application of a PCR-denaturing gradient gel electrophoresis tool to study the diversity of Nitrobacter-like nxrA sequences in soil. FEMS Microbiology Ecology, 2008, 63(2): 261–271

    Article  CAS  Google Scholar 

  38. Schramm A, De Beer D, Wagner M, Amann R. Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Applied and Environmental Microbiology, 1998, 64(9): 3480–3485

    CAS  Google Scholar 

  39. Cole A C, Semmens M J, LaPara T M. Stratification of activity and bacterial community structure in biofilms grown on membranes transferring oxygen. Applied and Environmental Microbiology, 2004, 70(4): 1982–1989

    Article  CAS  Google Scholar 

  40. Vázquez-Padín J, Mosquera-Corral A, Campos J L, Méndez R, Revsbech N P. Microbial community distribution and activity dynamics of granular biomass in a CANON reactor. Water Research, 2010, 44(15): 4359–4370

    Article  Google Scholar 

  41. Li T, Bai R, Liu J. Distribution and composition of extracellular polymeric substances in membrane-aerated biofilm. Journal of Biotechnology, 2008, 135(1): 52–57

    Article  CAS  Google Scholar 

  42. Bell A, Aoi Y, Terada A, Tsuneda S, Hirata A. Comparison of spatial organization in top-down- and membrane-aerated biofilms: a numerical study. Water Science and Technology, 2005, 52(7): 173–180

    CAS  Google Scholar 

  43. Wyffels S, Boeckx P, Pynaert K, Zhang D, Van Cleemput O, Chen G, Verstraete W. Nitrogen removal from sludge reject water by a two-stage oxygen-limited autotrophic nitrification denitrification process. Water Science and Technology, 2004, 49(5–6): 57–64

    CAS  Google Scholar 

  44. Sliekers A O, Haaijer S C M, Stafsnes M H, Kuenen J G, Jetten M S M. Competition and coexistence of aerobic ammonium-and nitrite-oxidizing bacteria at low oxygen concentrations. Applied Microbiology and Biotechnology, 2005, 68(6): 808–817

    Article  CAS  Google Scholar 

  45. Blackburne R, Yuan Z G, Keller J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation, 2008, 19(2): 303–312

    Article  CAS  Google Scholar 

  46. Yamamoto T, Takaki K, Koyama T, Furukawa K. Novel partial nitritation treatment for anaerobic digestion liquor of swine wastewater using swim-bed technology. Journal of Bioscience and Bioengineering, 2006, 102(6): 497–503

    Article  CAS  Google Scholar 

  47. Villaverde S, Fdz-Polanco F, Garca P A. Nitrifying biofilm acclimation to free ammonia in submerged biofilters. Start-up influence. Water Research, 2000, 40(2): 602–610

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongchang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Zhan, X., Zhang, Y. et al. Nitrifying population dynamics in a redox stratified membrane biofilm reactor (RSMBR) for treating ammonium-rich wastewater. Front. Environ. Sci. Eng. China 5, 48–56 (2011). https://doi.org/10.1007/s11783-011-0305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-011-0305-7

Keywords

Navigation